通过青藏高原中部兹格塘错湖泊沉积物总碳(TC)、总有机碳(TOC)、总氮(TN)、总硫(TS)、氢指数(HI)、氧指数(OI)和有机质的碳同位素(δ^13Corg)等多项指标的综合分析,在判断沉积物中有机质来源的基础上,根据各指标的变化特征阐明了各自的气候指示意义,建立了兹格塘错全新世以来的古气候演化序列.10100 cal a BP兹格塘错地区进入全新世,全新世早中期为暖湿气候特征,在8600~8400和7400~7000 cal a BP发生两次强烈冷事件;中晚全新世以来气候变冷变干.这一气候演化过程与其邻近的错鄂的研究结果相近,代表了青藏高原中部全新世的气候演化特点.青藏高原中部全新世气候变化主要受太阳辐射控制.
Multi-proxies of lacustrine sediments, such as total carbon (TC), total organic carbon (TOC), total inorganic carbon (TIC), total nitrogen (TN), total sulfur (TS), hydrogen index (HI), oxygen index (OI) and stable carbon isotopic composition of organic matter (δ^(13)C_(org)), were analyzed using a 7.3 m core from Zige Tangco. The source of the organic matter in the sediment was mainly from autochthonous phyto-plankton, therefore the significances of proxies can be interpreted as that high TOC, TOC/TS, HI and δ^(13)C_(org) values, low TC, TIC values corresponded to warm and wet climatic condition, and vice versa. The process of climatic development in the Zige Tangco region was hence recovered. During the early and Mid-Holocene, the climate was warm and wet and intensive cold events occurred during the periods of 8600 to 8400 cal a BP and 7400 to 7000 cal a BP. In the second half of Holocene, the climate became cold and dry gradually. The palaeoclimatic process during Holocene in Zige Tangco region matched well with that in Co Ngoin region which is ca 40 km to the south-east. Therefore this palaeoclimatic process represents the Holocene climatic feature in the Central Tibetan Plateau which has the same pattern in the Northern Tibetan Plateau, but the time and duration of some climatic events might be different. We can conclude that in Holocene solar insolation controlled the climatic pattern on the central Tibetan Plateau.