提出了一种协作式整体局部分类算法,即C2M(Collaborative classification machine with local and global information),该算法利用两类样本各自的协方差作为整体方向信息,获得两个带整体和局部信息的分类面,并通过组合分类器的平均规则将两个分类面组合,得到最终的最优判决平面.该算法可用两次QP(Quadratic programming)求解,时间复杂度为O(2N3),大大小于M4(Maxi-min margin machine)的O(N4),线性核时的分类精度高于只利用了局部信息的支持向量机(Support vector machine,SVM).理论上证明了在交遇区较多时,C2M可以比M4更有效地利用全局信息,并提出了判断整体信息对分类是否有贡献的4个判别指标.模拟数据和标准数据集上与M4和SVM的对比实验证明了该算法的有效性.
传统支持向量机分类过程的计算量和支持向量的个数成正比,当支持向量较多时,其分类过程的计算比较耗时。该文基于支持向量的稀疏性,证明了对支持向量压缩时,收紧新的快速决策函数和原始决策函数之间的误差等价于在样本空间对原始支持向量进行K均值聚类操作,据此提出了一种约简支持向量的快速分类算法FD-SVM(Fast Decision algorithm of Support Vector Machine),该算法首先对原始的支持向量进行特定比例的K均值聚类操作,聚类的中心为约简后新的支持向量,按照分类误差最小的原则构建优化模型,用二次规划方法求解得到新的支持向量的系数。标准数据集上的实验表明,保持分类精度的损失在统计意义上不明显的前提下,FD-SVM可以有效压缩支持向量的数量,提高分类速度。