您的位置: 专家智库 > >

国家自然科学基金(10901020)

作品数:6 被引量:12H指数:2
相关作者:金蛟赵海楠师玥更多>>
相关机构:北京师范大学更多>>
发文基金:国家自然科学基金中央高校基本科研业务费专项资金教育部人文社会科学研究基金更多>>
相关领域:理学生物学电子电信更多>>

文献类型

  • 6篇中文期刊文章

领域

  • 5篇理学
  • 1篇生物学
  • 1篇电子电信

主题

  • 2篇VARYIN...
  • 2篇COEFFI...
  • 2篇SIEVE
  • 1篇异常值
  • 1篇缺失数据
  • 1篇位点
  • 1篇线性EV模型
  • 1篇基因识别
  • 1篇加权
  • 1篇剪切位点
  • 1篇渐近
  • 1篇渐近正态
  • 1篇渐近正态性
  • 1篇M估计
  • 1篇NORMAL...
  • 1篇ROBUST
  • 1篇STATIS...
  • 1篇ASYMPT...
  • 1篇CANONI...
  • 1篇CORREL...

机构

  • 3篇北京师范大学

作者

  • 3篇金蛟
  • 1篇赵海楠
  • 1篇师玥

传媒

  • 2篇北京师范大学...
  • 2篇Scienc...
  • 1篇数学的实践与...
  • 1篇Acta M...

年份

  • 1篇2016
  • 2篇2015
  • 3篇2010
6 条 记 录,以下是 1-6
排序方式:
缺失数据下线性EV模型的稳健参数估计被引量:3
2015年
给出了多元线性EV模型下协变量具有随机缺失(MAR)时参数的稳健估计方法,并证明了估计的渐近正态性.模拟研究表明估计量在有限样本下具有很好的效果.
赵海楠金蛟
关键词:线性EV模型MARM估计渐近正态性
基于稳健判别方法的基因剪切位点识别被引量:2
2016年
基因识别是生物信息学研究的一个分支.多元统计中的判别分析方法模型简单、便于解释,处理剪切位点的识别问题效果良好,但极易受到异常值的影响.对于传统判别分析方法,使用稳健统计量进行优化,得到较好的效果,并通过加权方法进一步提高了判别分析方法的稳健性,取得了更好的识别效果.加权稳健判别分析方法稳健性高、受离群值影响小,对其他分类判别问题具有很好的实际意义和参考价值.
师玥金蛟
关键词:基因识别剪切位点异常值
空间面板滞后模型的权重选取方式探究被引量:1
2015年
通过最大化空间滞后项与残差的相关系数,提出了空间面板滞后模型中权重矩阵的选取方法,并与2SLSCWB方法进行了对比,模拟和实例表明该方法效果很好.
柴真真金蛟
Sieve M-estimation for semiparametric varying-coefficient partially linear regression model被引量:1
2010年
This article considers a semiparametric varying-coefficient partially linear regression model.The semiparametric varying-coefficient partially linear regression model which is a generalization of the partially linear regression model and varying-coefficient regression model that allows one to explore the possibly nonlinear effect of a certain covariate on the response variable.A sieve M-estimation method is proposed and the asymptotic properties of the proposed estimators are discussed.Our main object is to estimate the nonparametric component and the unknown parameters simultaneously.It is easier to compute and the required computation burden is much less than the existing two-stage estimation method.Furthermore,the sieve M-estimation is robust in the presence of outliers if we choose appropriate ρ(·).Under some mild conditions,the estimators are shown to be strongly consistent;the convergence rate of the estimator for the unknown nonparametric component is obtained and the estimator for the unknown parameter is shown to be asymptotically normally distributed.Numerical experiments are carried out to investigate the performance of the proposed method.
HU Tao 1,2 & CUI HengJian 1,2 1 School of Mathematical Sciences,Beijing Normal University,Laboratory of Mathematics and Complex Systems,Ministry of Education,Beijing 100875,China
关键词:NORMALITY
Efficient Estimation of a Varying-coefficient Partially Linear Binary Regression Model
2010年
This article considers a semiparametric varying-coefficient partially linear binary regression model. The semiparametric varying-coefficient partially linear regression binary model which is a generalization of binary regression model and varying-coefficient regression model that allows one to explore the possibly nonlinear effect of a certain covariate on the response variable. A Sieve maximum likelihood estimation method is proposed and the asymptotic properties of the proposed estimators are discussed. One of our main objects is to estimate nonparametric component and the unknowen parameters simultaneously. It is easier to compute, and the required computation burden is much less than that of the existing two-stage estimation method. Under some mild conditions, the estimators are shown to be strongly consistent. The convergence rate of the estimator for the unknown smooth function is obtained, and the estimator for the unknown parameter is shown to be asymptotically efficient and normally distributed. Simulation studies are carried out to investigate the performance of the proposed method.
TaoHUHeng Jian CUI
Asymptotic distributions in the projection pursuit based canonical correlation analysis被引量:5
2010年
In this paper, associations between two sets of random variables based on the projection pursuit (PP) method are studied. The asymptotic normal distributions of estimators of the PP based canonical correlations and weighting vectors are derived.
JIN Jiao & CUI HengJian Department of Statistics and Financial Mathematics, School of Mathematical Sciences, Beijing Normal University, Laboratory of Mathematics and Complex Systems (Beijing Normal University), Ministry of Education, Beijing 100875, China
关键词:ASYMPTOTICCANONICALCORRELATIONFUNCTIONROBUSTSTATISTICS
共1页<1>
聚类工具0