Recent progress in nanotechnology has provided high-performance nanomaterials for enzyme immobilization.Nanobiocatalysts combining enzymes and nanocarriers are drawing increasing attention because of their high catalytic performance,enhanced stabilities,improved enzyme-substrate affinities,and reusabilities.Many studies have been performed to investigate the efficient use of cellulose nanocrystals,polydopamine-based nanomaterials,and synthetic polymer nanogels for enzyme immobilization.Various nanobiocatalysts are highlighted in this review,with the emphasis on the design,preparation,properties,and potential applications of nanoscale enzyme carriers and nanobiocatalysts.
A support made of mussel-inspired polydopamine-coated magnetic iron oxide nanoparticles (PD-MNPs) was prepared and characterized. The widely used Aspetyillus niger lipase (ANL) was immobilized on the PD-MNPs (ANL@PD-MNPs) with a protein loading of 138 mg/g and an activity recovery of 83.6% under optimized conditions. For the immobilization, the pH and immobilization time were investigated. The pH and thermal and storage stability of the ANL@PD-MNPs significant- ly surpassed those of free ANL. The ANL@PD-MNPs had better solvent tolerance than free ANL. The secondary structure of free ANL and ANL@PD-MNPs was analyzed by infrared spectroscopy, A kinetic study demonstrated that the ANL@PD-MNPs had enhanced enzyme-substrate affinity and high catalytic efficiency. The ANL@PD-MNPs was applied as a biocatalyst for the regioselective acylation of dihydromyricetin (DMY) in DMSO and gave a conversion of 79.3%, which was higher than that of previous reports. The ANL@PD-MNPs retained over 55% of its initial activity after 10 cycles of reuse. The ANL@PD-MNPs were readily separated from the reaction system by a magnet. The PD-MNPs is an excellent support for ANL and the resulting ANL@PD-MNPs displayed good potential for the efficient synthesis of dihydromyricetin-3-acetate by enzymatic regioselective acylation.