In this paper, we first study the existence of transition fronts (generalized traveling fronts) for reaction-diffusion equations with the spatially heterogeneous bistable nonlinearity. By constructing sub-solution and super-solution we then show that transition fronts are globally exponentially stable for the solutions of the Cauchy problem. Furthermore, we prove that transition fronts are unique up to translation in time by using the monotonicity in time and the exponential decay of such transition fronts.
In this paper,we consider the reaction diffusion equations with strong generic delay kernel and non-local effect,which models the microbial growth in a flow reactor.The existence of traveling waves is established for this model.More precisely,using the geometric singular perturbation theory,we show that traveling wave solutions exist provided that the delay is sufficiently small with the strong generic delay kernel.
Naiwei Liu(School of Math.and Informational Science,Yantai University,Yantai 264005,Shandong)