The crushed-rock revetment, considered as a highly porous medium, is often applied to embankment slope to protect the underlying permafrost and ensure the thermal stability of roadway in permafrost regions. In this paper, in order to increase and optimize the cooling capacity of crushed-rock revetment in cold regions roadway engineering, based on the thermal convection theories, the practical geometry and the temperature characteristics of in-situ crushed-rock revetment, convective pattern and cooling effect of crushed-rock revetment are numerically studied, with a thickness of 1.0 m under different geometrical parameters, e.g. sloped angle and aspect ratio. The results indicate that, with a thickness of 1.0 m and a temperature difference of 10.0 °C between top and bottom boundaries, due to the existence of natural convection, the effective thermal conductivity of crushed-rock revetment can be increased and the thermal “semi-conductor” characteristics are endowed. However, the convective pattern changes with the variation of the sloped angle, namely, with the increase of the sloped angle, the convection cell number decreases; furthermore, when the flow changes from various cells to a single cell at a sloped angle, the Nu number is the smallest and the cooling effect is the worst, therefore, the corresponding sloped angle is considered as the worst cooling sloped angle. Besides, with the increase of the aspect ratio, the worst cooling sloped angle increases and tends to 32°, also approaching to the in-situ crushed-rock revetment angle 33.7°. Therefore, when the crushed-rock revetment embankment is too high, that is to say, the aspect ratio of the sloped crushed-rock revetment is too large, some measures should be taken to enhance its cooling effect, which have been researched and discussed in this paper. It is hoped that some scientific references can be supplied to the design and maintenance of the crushed-rock revetment embankment in cold regions.
As one part of the National Highway Network Planning in China, the Qinghai-Tibet Expressway (QTE) from Golmud to Lhasa will be built in the interior of the Qinghai-Tibet Plateau (QTP) across about 630 km of permafrost lands. Due to the problematic interactions between the engineering foundations and permafrost, the frozen-soil roadbed of the QTE will be subjected to the more intense thermal disturbances due to the wider black surface. The design and construction for long-term thermal and mechanical stability will face more severe challenges than those in ordinary highways and railways in the same region. In order to provide scientific support for cold regions engineering practices, the QTE Experimental Demonstration Project (EDP) was constructed in situ in the vicinity of the Beilu'he Permafrost Station in the interior of the QTP. In this paper, the anticipated problems of the proposed QTE project are enumerated, and the structures of the test sections for QTE EDP are described. Through numerical simulations, it was found that the heat transfer processes occurring in each specific road structure are significantly different. The heat accumulation in the highway embankment is mainly due to the black bituminous pavement, but in the railway embankment with its gravel surfaces, it mainly comes from the side slopes. As a result, the net heat accumulation of the highway embankment is three times higher than that in the railway. In expressway, the heat accumulation is further increased because of the wider pavement so that significantly more heat will be accumulated in the roadbed beneath the centerline area. Thus, the thermal stability of the fro- zen-soil roadbed and the underlying permafrost of the QTE can be seriously threatened without proper engineering measures protection against thawing. Based on research and practical experiences from the operating Qinghai-Tibet Railway (QTR) and the Qinghai-Tibet Highway (QTH), combined with the predicted characteristics of heat transfer in an expressway e
Wei Gu QiHao Yu Jin Qian HuiJun Jin JianMing Zhang