针对滚动轴承非平稳性的振动信号,提出了基于局部均值分解(Local Mean Decomposition,LMD)及马氏距离敏感阈值的滚动轴承故障诊断方法。首先,对振动信号进行LMD分解,获得一系列乘积函数(Production Function,PF),有的PF分量包含的故障信息多,有的包含的少,为此采用K-L散度法提取出主要PF分量;计算主要PF分量的时域参数指标,将其组合成特征向量,根据马氏距离提出马氏距离敏感阈值来表征不同的故障状态,取多组正常信号的特征向量均值作为标准特征向量,计算未知特征向量与标准特征向量的马氏距离敏感阈值,从而对其故障状态进行识别。试验结果表明,在不同转速下,该方法能够有效的对滚动轴承故障进行识别,且效果较EMD方法好。
提出了一种基于三维地理信息系统(Three Dimensional Geographic Information System,3D-GIS)和虚拟现实技术的洪水演进可视化仿真的原理和方法,给出了根据二维浅水方程的数值计算结果构建洪水演进可视化模型的具体过程,讨论了3D-GIS洪水演进可视化实现的关键技术。最后,设计并实现了一个包含洪水演进可视化功能的完整的决策支持系统,能为防洪和减灾提供直观的图像信息,并且该系统成功地应用在实际生活中的相关部门。
针对滚动轴承非平稳性的振动信号,提出了基于总体局域均值分解(Ensemble Local Mean Decomposition,ELMD)及核密度估计的滚动轴承故障诊断方法。首先,对振动信号进行ELMD分解,获得一系列乘积函数(Production Function,PF),计算包含主要故障的PF分量的有效值、峭度、偏度系数,将其组合成特征向量;根据核密度估计的特性提出基于核密度估计的分类器,将特征向量输入分类器进行训练与测试,从而识别滚动轴承的工作状态和故障类型。实验结果表明,该方法能够有效的对滚动轴承故障进行识别,且效果较LMD方法好。