The characteristics of pairwise entanglement and local polarization (LP) are dis-cussed by studying the ground state (states) of the Heisenberg XX model. The re-sults show that: the ground state (states) is (are) composed of the micro states with the minimal polarization (0 for even qubit and 1/2 for odd qubit); LP and the prob-ability of the micro state have an intimate relation, i.e. the stronger the LP, the smaller the probability, and the same LP corresponds to the same probability; the pairwise entanglement of the ground state is the biggest in all eigenvectors. It is found that the pairwise entanglement is decreased by the state degeneracy and the system size. The concurrence approaches a fixed value of about 0.3412 (for odd-qubit chain) or 0.3491 (for even-qubit chain) if the qubit number is large enough.
XI XiaoQiang1,2, ZHANG Tao3, YUE RuiHong3,4 & LIU WuMing2 1 Department of Applied Mathematics and Physics, Xi’an Institute of Post and Telecommunications, Xi’an 710061, China
This paper studies the Josephson-like tunnelling in two-component Bose-Einstein condensates coupled with microwave field, which is in respond to various attractive and repulsive atomic interaction under the various aspect ratio of trapping potential. It is very interesting to find that the dynamic of Josephson-like tunnelling can be controlled from fast damped oscillations to nondamped oscillation, and relative number of atoms changes from asymmetric occupation to symmetric occupation correspondingly.