Theoretical calculations of the energy bands in nucleus 102 Zr are carried out by taking the projected shell model approach, which has reproduced the experimental data. In addition, by analyzing band-head energies, corresponding configurations of yrast band, quasi-particle rotational bands and side bands, we have worked out the microscopic formation mechanism of axially symmetric deformation bands: The low-excitation deformation bands are attributed to the high-j intruder states 1g 7/2 and 1h 11/2 in the N=4, 5 shells; the quasi-particles in the orbit v5/2-[532], v3/2+[411] and v3/2+[413] in particular play an important role in the deformation of 102 Zr.
DONG GuoXiang 1,2 , YU ShaoYing 1,2,3 , LIU YanXin 1 , SHEN CaiWan 1,2,4 & DONG YongSheng 1,2,5I School of Science, Huzhou Teachers College, Huzhou 313000, China
A tentative method based on the principle of minimum energy is put forward for assigning the reasonable configuration of a triaxial nucleus in TRS. This method is proved by the TSD of 167Lu nucleus that has been calculated previously by TRS.