为满足管道监测系统的自供电需求,提出一种复合钝体扰流纵振式压电气流发电机。介绍了发电机的结构、工作原理。通过理论分析与实验测试研究了钝体结构对其性能的影响,证明了发电机原理的可行性。研究结果表明:平均阻力随流速及直径比增加呈二次方增长,平均阻力系数随直径比的增大而增大,最后趋于稳定(5.34);对于柔性钝体发电机,直径比与钝体厚度对其输出电压均有较大影响,存在最佳直径比(α=0.953)与最佳厚度(0.1 mm
Due to the limited output capability of piezoelectric diaphragm pumps, the driving voltage is frequently increased to obtain the desired output. However, the excessive voltage application may lead to a large deformation in the piezoelectric ceramics, which could cause it to breakdown or become damaged. Therefore, increasing the number of chambers to obtain the desired output is proposed. Using a check-valve quintuple-chamber pump with quintuple piezoelectric actuators, the characteristics of the pump under different driving modes are investigated through experiments. By changing the number and connection mode of working actuators, pump performances in terms of flow rate and backpressure are tested at a voltage of 150 V with a frequency range of 60 Hz -400 Hz. Experiment results indicate that the properties of the multiple-chamber pump change significantly with distinct working chambers even though the number of pumping chambers is the same. Pump performance declines as the distance between the working actuators increases. Moreover, pump performance declines dramatically when the working piezoelectric actuator closest to the outlet is involved. The maximum backpressures of the pump with triple, quadruple, and quintuple actuators are increased by 39%, 83%, and 128%, respectively, compared with the pump with double working actuators; the corresponding maximum flow rates of the pumps are simply increased by 25.9%, 49.2%, and 67.8%, respectively. The proposed research offers practical guidance for the effective utilization of the multiple-chamber pumps under different driving modes.