In this study, compounded surface modification technology-high current pulsed electron beam (HCPEB) + micro-plasma oxidation (MPO) was applied to treat ZK60 Mg alloys. The characteristics of the microstructure of ZK60 Mg alloy after single MPO and HCPEB+MPO compounded treatment were investigated by SEM. The results showed that the density of the ceramic layer of HCPEB+MPO-treated ZK60 Mg alloy was improved and defects were reduced compared to that under MPO treatment alone. Surface modified layer of ZK60 Mg alloys treated by HCPEB+MPO was divided into three zones, namely the top loose ceramic zone, middle compact zone and inside HCPEB-induced melted zone. Corrosion resistance of ZK60 Mg alloy before and after the compounded surface modification was measured in a solution of 3.5% NaCl by potentiodynamic polarization curves. It was found that the corrosion current density of ZK60 Mg alloys could be reduced by about three orders of magnitude, from 311μA/cm^2 of the original sample to 0.2μA/cm^2 of the HCPEB+MPO-treated sample. This indicates the great application potential of the HCPEB+MPO compounded surface modification technology in improving the corrosion resistance of ZK60 Mg alloys in the future.
The mechanical properties of hypereutectic Al-Si alloys are mainly determined by size and morphology of the primary silicon phase.So,optical microscopy(OM) and X-ray diffraction(XRD) were adopted to study affection of Nd on primary silicon of hypereutectic Al-15%Si alloy in this paper.The results of OM showed that pure Nd could effectively refine primary silicon of hypereutectic Al-15%Si alloy.When Nd addition was 0.3%,the average size of primary silicon reduced from 20-40 μm of initial sample to 10-20 μm of modified sample.XRD pattern showed that no new phase was formed after Nd modification.The results of mechanical properties test showed that whole properties of modified samples were significantly improved.Tensile strength increased about 32.6% from 147 MPa to 195 MPa.Elongation was increased about 160% from 1.0% to 2.6%.The improvement of mechanical properties should attribute to primary silicon refinement after modification.