A single ZnO nanowire with intrinsic oxygen vacancies is utilized to fabricate four-contact device with focus ion beam lithography technique. Cathodoluminescent spectra indicate strong near-UV and green emission at both room temperature and low temperatures. Experimental measurement shows the temperature-dependent conductivity of the ZnO nanowire at low temperatures (below 100 K). The further theoretical analysis confirms that weak localization plays an important role in the electrical transport, which is attributed to the surface states induced by plenty of oxygen vacancies in ZnO nanowire.
Research interest in ZnO nanostructures derives from their excellent luminescent properties and availability of low cost fabricating and processing,which hold promise for the development of electronic and optoelectronic nanodevices.In this review,we focus on the progress in synthesis,properties and nanodevices of ZnO nanorod(NR)arrays and nanotetrapods(NTPs).Recent work done by the authors are also presented.After a brief introduction to the controlled fabrication methods for the highly-ordered ZnO NR arrays and NTPs,we present some aspects of the fundamental properties,especially optical performance,of ZnO NRs/NTPs.Then,we provide an overview of the applications to functional nanodevices based on individual NR and NTP of ZnO.It is demonstrated that different morphologies of ZnO nanostructures have salient effects on their properties and applications.Although much progress has been achieved in the fundamental and applied investigations of ZnO NRs/NTPs over the past decade,many obstacles still remain,hampering further development in this field.Finally,some longstanding problems that warrant further investigation are addressed.
Zn2SnO4 (ZTO) nanowires with a unique dendritic nanostructure were synthesized via a simple one-step thermal evaporation and condensation process. The morphology and microstructure of the ZTO nanodendrite have been investigated by means of field emission scanning electron microscopy (SEM), x-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM). SEM observation revealed the formation of branched nanostructures and showed that each branch exhibited a unique periodic structure formed by a row of overlaid rhombohedra of ZTO nanocrystals along the axis of the nanobranch. HRTEM studies displayed that the branches grew homoepitaxially as single-crystalline nanowires from the ZTO nanowire backbone. A possible growth model of the branched ZTO nanowires is discussed. To successfully prepare branched structures would provide an opportunity for both fundamental research and practical applications, such as three-dimensional nanoelectronics, and opto-electronic nanodevices.