In this paper,characteristics of flow and convective heat transfer of China RP-3 kerosene in straight circular pipe were numerically studied.Navier-Stokes equations were solved using RNG k-turbulence model with low Reynolds number correction.The thermophysical and transport properties of the China RP-3 kerosene were calculated with a 10-species surrogate and the extended corresponding state method(ECS) combined with Benedict-Webb-Rubin equation.The independence of grids was first studied and the numerical results were then compared with experimental data for validation.Under flow conditions given in the paper,the results show that deterioration of convective heat transfer occurs when the wall temperature is slightly higher than the pseudo-critical temperature of kerosene for cases with wall heat flux of 1.2 and 0.8 MW/m 2.The degree of the heat transfer deterioration is weakened as the heat flux decreases.The deterioration,however,does not happen when the heat flux on the pipe wall is reduced to 0.5 MW/m 2.Based on the analysis of the near-wall turbulent properties,it is found that the heat transfer deterioration and then the enhancement are attributed partly to the change in the turbulent kinetic energy in the vicinity of pipe wall.The conventional heat transfer relations such as Sieder-Tate and Gnielinski formulas can be used for the estimation of kerosene heat convection under subcritical conditions,but they are not capable of predicting the phenomenon of heat transfer deterioration.The modified Bae-Kim formula can describe the heat transfer deterioration.In addition,the frictional drag would increase dramatically when the fuel transforms to the supercritical state.
In this paper,the methodology of the directed relation graph with error propagation and sensitivity analysis(DRGEPSA),proposed by Niemeyer et al.(Combust Flame 157:1760-1770.2010).and its differences to the original directed relation graph method are described.Using DRGEPSA,the detailed mechanism of ethylene containing 71 species and 395 reaction steps is reduced to several skeletal mechanisms with different error thresholds.The 25-species and 131-step mechanism and the 24-species and115-step mechanism are found to be accurate for the predictions of ignition delay time and laminar flame speed.Although further reduction leads to a smaller skeletal mechanism with 19 species and 68 steps,it is no longer able to represent the correct reaction processes.With the DRGEPSA method,a detailed mechanism for n-dodecane considering low-temperature chemistry and containing 2115 species and8157 steps is reduced to a much smaller mechanism with249 species and 910 steps while retaining good accuracy.If considering only high-temperature(higher than 1000 K)applications,the detailed mechanism can be simplified to even smaller mechanisms with 65 species and 340 steps or48 species and 220 steps.Furthermore,a detailed mechanism for a kerosene surrogate having 207 species and 1592 steps is reduced with various error thresholds and the results show that the 72-species and 429-step mechanism and the66-species and 392-step mechanism are capable of predicting correct combustion properties compared to those of the detailed mechanism.It is well recognized that kinetic mechanisms can be effectively used in computations only after they are reduced to an acceptable size level for computation capacity and at the same time retaining accuracy.Thus,the skeletal mechanisms generated from the present work are expected to be useful for the application of kinetic mechanisms of hydrocarbons to numerical simulations of turbulent or supersonic combustion.
The hypersonic long-run scramjet test tunnel is one of the key ground facilities for the studies of ramjet/scramjet and hypersonic thermal management.Due to the significantly large heat loading,the nozzle of the tunnel facility demands effective cooling protection.In this work,the two-dimensional,three-dimensional and axisymmetric Mach 6.5 nozzles at an inlet total temperature of 1840 K and a total pressure of 6.4 MPa were studied with main focuses on the properties of aerodynamic heating of nozzles.The present work aims to provide insights into the design of an effective cooling system for the nozzle and other components of the hypersonic long-run wind tunnel.