Seed germination and early seedling growth are crucial stages for plant establishment. Two neutral(Na Cl and Na2SO4) and two alkali(Na HCO3 and Na2CO3) salts were selected to investigate their effects on germination and recovery responses in Reaumuria soongorica. Results show that both salt types significantly reduced germination and radicle elongation. The rate of germination and emergence of R. soongorica seeds continuously decreased as salinity increased, and the time to achieve maximum germination rate was delayed. The speed of seed germination dropped rapidly as salt concentration increased.Alkaline salts restricted the germination rate of R. soongorica seeds, and stresses resulting from alkaline salts and high concentrations of neutral salts resulted in many deformed seedlings. The length of the radicle and germ decreased with increasing salt concentration, but certain concentrations of salt and increased p H promoted germ growth. The results of regression analysis show that salt concentration was the dominant factor inhibiting R. soongorica seed germination rate. Salinity, buffering capacity, and p H all affected embryo growth, but salinity had the most pronounced effect. Seed viability under highly saline conditions appears to be a better indicator of adaptation to saline environments than seed germination under saline conditions.
Stable oxygen and hydrogen isotopic compositions (δ18O and δD) of soil water and shallow groundwater of a riparian forest, an artificial shrub forest, and Gobi of the lower reaches of the Heihe River Basin are used to study the recharge water sources of those ecosystems. IsoSource software is used to determine the δ180 values for root water of Populous euphratica and Tamarix ramosissima in the riparian forest ecosystem, Haloxylon ammodendron in the artificial shrub forest, and Reaumuria soongorica in the Gobi, as well as for local soil water and groundwater, and precipitation in the upper reaches of the Heihe River Basin. Our results showed that soil water and shallow groundwater of the riparian forest and the artificial shrub forest were recharged by river water which originated from precipitation in the upper reaches, and strong evaporation occurred in the artificial shrub forest. Soil water of the Gobi was not affected by Heihe River water due to this area being far away from the river channel. The main water sources of Populous euphratica were from 40-60-cm soil water and groundwater, and of Tamarix ramosissima were from 40-80-cm soil water in the riparian forest ecosystem. In the artificial forest, Haloxylon ammodendron used 200-cm saturated-layer soil water and shallow groundwater. The Reaumuria soongorica mainly used soil water from the 175-200-cm depth in the Gobi. Therefore, soil water and groundwater are the main water sources which maintain survival and growth of the plants in the extremely arid regions of the lower reaches of the Heihe River Basin.
YunFeng RuanLiangJu ZhaoHongLang XiaoGuoDong ChengMaoXian ZhouFang Wang
The hydrological processes of mountainous watersheds in inland river basins are complicated.It is absolutely significant to quantify mountainous runoff for social,economic and ecological purposes.This paper takes the mountainous watershed of the Heihe Mainstream River as a study area to simulate the hydrological processes of mountainous watersheds in inland river basins by using the soil and water assessment tool(SWAT)model.SWAT simulation results show that both the Nash–Sutcliffe efficiency and the determination coefficient values of the calibration period(January 1995 to December 2002)and validation period(January 2002 to December 2009)are higher than 0.90,and the percent bias is controlled within±5%,indicating that the simulation results are satisfactory.According to the SWAT performance,we discussed the yearly and monthly variation trends of the mountainous runoff and the runoff components.The results show that from 1996 to 2009,an indistinctive rising trend was observed for the yearly mountainous runoff,which is mainly recharged by lateral flow,and followed by shallow groundwater runoff and surface runoff.The monthly variation demonstrates that the mountainous runoff decreases slightly from May to July,contrary to other months.The mountainous runoff is mainly recharged by shallow groundwater runoff in January,February,and from October to December,by surface runoff in March and April,and by lateral flow from May to September.