The porous Co3O4 nanowires have been successfully synthesized via modified template method. A possible growth mechanism governing the formation of such 1D nanowires is proposed. The as-prepared products have been characterized by X-ray Powder Diffraction (XRD), Extended X-ray Absorption Fine-structure (EXAFS), High-resolution Transmission Electron Microscopy (HRTEM) and N2 adsorption/desorption analysis. Our systematic studies have revealed that the porous Co3O4 nanowires show excellent gas sensing performances, which demonstrate the potential application of the 1D nanostructured Co3O4 in the detection of the ethanol gas as a sensor material. The improved performances are owing to its large specific surface area and porous morphology.
MA MaiXiaPAN ZhiYunGUO LinLI JingHongWU ZiYuYANG ShiHe
The Co3O4 nanowires have been successfully synthesized via modified template method.The as-prepared products have been characterized by EDS,TEM and HRTEM analysis.The magnetic behavior of it is investigated by a magnetic property measurement system.The nanowires exhibit some novel magnetic properties,which are different from its bulk material.The temperature dependence curves of magnetization in zero-field-cooling and field-cooling exhibit two peaks of antiferromagnetic at blocking temperature of~23 K and~31 K,respectively.The field dependent M(H) curves of the Co_3O_4 nanowires at T = 5 and 300 K both exhibit PM properties.Moreover,the diameter of nanowires is hence determined according to the finite size effect as approximately 7-11 nm,in consistent with the characterizations by HRTEM.
Mai Xia MaWei Meng ChenLin GuoJing Hong LiChin Ping ChenShi He Yang