In this paper, we present an extensive study of the linearly forced isotropic turbulence. By using analytical method, we identify two parametric choices, of which they seem to be new as far as our knowledge goes. We prove that the underlying nonlinear dynamical system for linearly forced isotropic turbulence is the general case of a cubic Lienard equation with linear damping. We also discuss a FokkerPlanck approach to this new dynamical system, which is bistable and exhibits two asymmetric and asymptotically stable stationary probability densities.