The Huai River Basin is a unique area in P.R.China with the highest densities of population and water projects.It is also subject to the most serious water pollution.We proposed a distributional SWAT(Soil and Water Assessment Tool) model coupled with a water quality-quantity balance model to evaluate dam impacts on river flow regimes and water quality in the middle and upper reaches of the Huai River Basin.We calibrated and validated the SWAT model with data from 29 selected cross-sections in four typical years(1971,1981,1991 and 1999) and used scenario analysis to compensate for the unavailability of historical data regarding uninterrupted river flows before dam and floodgate construction,a problem of prediction for ungauged basins.The results indicate that dam and floodgate operations tended to reduce runoff,decrease peak value and shift peaking time.The contribution of water projects to river water quality deterioration in the concerned river system was between 0 to 40%,while pollutant discharge contributed to 60% to 100% of the water pollution.Pollution control should therefore be the key to the water quality rehabilitation in the Huai River Basin.
以潮白河为研究区域,探讨了与模型参数及模型模拟性能有关的多参数灵敏度及不确定性分析方法(Multi-Parameter Sensitivity and Uncertainty Analysis,MPSUA)。基于MonteCarlo模拟的多参数灵敏度分析,可以评价模型中多个参数的相对重要性。GLUE不确定性分析则能对模型性能进行量化评估。实例研究表明,通过MPSUA方法,可以减少优化参数的个数。而且,在没有对模型进行参数优化之前,基于MPSUA就可以确定模型的模拟精度。例如同样的模型在潮河可以获得比在白河更高的模拟精度。这种同一模型在不同流域所体现的差异性,一方面是源于模型结构本身的不完善,另一方面则与用于建模的数据误差有关。SCE-UA参数优化结果与MPSUA结果几乎一致,说明本文的参数灵敏度与模型总体性能评估方法比较合理。