Algal-bloom control is an important issue for water environment protection as it induces several negative impacts on the lives of aquatic organisms,aquaculture,landscaping,and human health.The development of an environment-friendly,cost-effective,and convenient alternative for controlling algal bloom has gained much concern.Using the allelopathy of aquatic macrophytes as a novel and safe method for algal-bloom control is a promising alternative.This paper reviews the development and potential application about allelopathy of aquatic plants on algae,including the allelopathic research history,the potential research problems,the research methodology,and the reported aquatic macrophytes and their inhibitory allelochemicals.Potential modes of inhibition action of allelochemicals on algae,possible ways for application,and future development directions of research on algal-bloom control by aquatic macrophytes were also presented.
Activated carbon was prepared from cattail by H3PO4 activation. The effects influencing the surface area of the resulting activated carbon followed the sequence of activated temperature 〉 activated time 〉 impregnation ratio 〉 impregnation time. The optimum condition was found at an impregnation ratio of 2.5, an impregnation time of 9 hr, an activated temperature of 500℃, and an activated time of 80 min. The Brunauer-Emmett-Teller surface area and average pore size of the activated carbon were 1279 m^2/g and 5.585 nm, respectively. A heterogeneous structure in terms of both size and shape was highly developed and widely distributed on the carbon surface. Some groups containing oxygen and phosphorus were formed, and the carboxyl group was the major oxygen-containing functional group. An isotherm equilibrium study was carried out to investigate the adsorption capacity of the activated carbon. The data fit the Langmuir isotherm equation, with maximum monolayer adsorption capacities of 192.30 mg/g for Neutral Red and 196.08 mg/g for Malachite Green. Dye-exhausted carbon could be regenerated effectively by thermal treatment. The results indicated that cattail-derived activated carbon was a promising adsorbent for the removal of cationic dyes from aqueous solutions.