Lutetium aluminum garnet (LuAG) precursors doped with different Pr^3+ concentration (0.25at.%, 0.5at.%, 1.0at.%, 3.0at.%, 5.0at.%) were synthesized via a co-precipitation method using ammonium hydrogen carbonate as precipitant. The phase evolution and morphology of the precursor were characterized with X-ray diffractometer (XRD) and transmission electron microscopy (TEM). The resultant LuAG:Pr^3+ powder was sintered into translucent ceramic without any additives in vacuum at 1150 ℃ and then in nitrogen atmosphere at 1700 ℃. spectra of LuAG:Pr^3+ powder and ceramic were measured at room temperature in vacuum ultraviolet (VUV) and ultraviolet (VU) region. For the 5d-4f transition of Pr^3+ ions, dominant emission of ceramic samples peaking round 311 um had higher luminescence intensity. And the host absorption in ceramic samples was not as intensive as that in powder samples. The luminescent intensity of LuAG:Pr^3+ varied with the Pr^3+ contents and the quenching concentration was about 1.0at.% for ceramic and 3.0at.% for powder, which was much higher than 0.24at.% for LuAG:Pr^3+ single crystals. This phenomenon showed that the ceramic had some superiority over single crystals.
Rare earth ions doped gadolinium oxybromide phosphors GdOBr:RE^3+ (RE=Eu, Tb, Ce) were synthesized by the method of solid-state reaction at high temperature, and the VUV-VIS spectroscopic properties of the phosphors were systematically investigated. Under the excitation of VUV or UV source, the phosphors doped with Eu^3+ and Tb^3+ show a bright and sharp emission at around 620 nm corresponding to the forced electric dipole ^5D0→^7F2 transition of Eu^3+, and at around 544 nm corresponding to the ^5D4→^7F5 transition of Tb^3+, respectively. For GdOBr:Ce^3+, a broader and intense emission spanned 370-500 nm corresponding to the d-f transition of Ce^3+ was observed. The excitation spectra were also analyzed.