We have discussed the materials of solar cell based on hybrid organic–inorganic halide perovskites with formamidinium(NH_2CH = NH_2^+or FA) lead iodide. Firstly, we build the structure of formamidinium lead iodide(FAPbI_3) by using the material studio. By using the first-principles calculations, the energy band structure, density of states(DOS), and partial DOS(PDOS) of the hydrazine-iodide lead halide are obtained. Then, we theoretically analyze a design scheme for perovskite solar cell materials, published in [Science 354, 861(2016)], with the photoelectric conversion efficiency that can reach 20.3%. Also, we use non-toxic elements to replace lead in FAPbI_3 without affecting its photoelectric conversion efficiency. Here in this work, we explore the energy band structure, lattice constant, light absorption efficiency, etc. After the Ca, Zn, Ge Sr, Sn, and Ta atoms replacing lead(Pb) and through comparing the spectral distributions of the solar spectrum, it can be found that FAGeI_3, FASnI_3, and FAZnI_3 have better absorbance characteristics in the solar spectrum range. If the band gap structure is taken into account, FAGeI_3 will become an ideal material to replace FAPbI_3, although its performance is slightly lower than that of FAPbI_3. The toxicity of Pb is taken into account, and the Ge element can be used as a substitute element for Pb. Furthermore, we explore one of the perovskite materials, i.e., FA0.75Cs_(0.25)Sn_(0.25)Ge_(0.75)I_3 whose photovoltaic properties are close to those of FA_(0.75)Cs_(0.25)Sn_(0.5)Pb_(0.5)I_3, but the former does not contain toxic atoms.Our results pave the way for further investigating the applications of these materials in relevant technologies.
特丁基对苯二酚是重要的食品抗氧化剂.理论上,基于密度泛函理论,采用B3LYP泛函及6-311G(d,p)基组在气相环境下优化分子的结构并进行频率计算.在此基础上,基于含时密度泛函理论,选用SMD(solvation model based on density)溶剂模型,利用B3LYP泛函并结合def2-TZVP基组计算分子在无水乙醇溶剂中的前50个激发态.再通过Multiwfn软件对红外光谱做振动分析并考察分子间相互作用对红外光谱的影响,对紫外光谱做分子轨道和电子空穴分析.实验上,通过KBr压片法,利用傅里叶红外变换光谱仪测定样品红外光谱.采用液相法,以乙醇为溶剂,利用紫外可见分光光度计测定样品紫外光谱.通过对比分析可知,理论光谱与实验光谱总体吻合较好.红外光谱各基团的特征吸收峰都较为明显且较好吻合,特丁基对苯二酚二聚体存在氢键作用,这使得O—H键的强度被削弱,导致吸收频率降低并在3670—3070 cm^(-1)处出现一个宽峰.紫外光谱主要由基态跃迁至第1,2,6,7激发态形成,最大吸收峰位于200 nm以下,为π→π^(*)和s→π^(*)跃迁形成,268.8 nm和221.4 nm处的吸收峰均为n→π^(*)和π→π^(*)跃迁形成.由电子空穴图可知,这4个主要激发均为电子局域激发.