Highly ordered mesoporous NiMoO4 material was successfully synthesized using mesoporous silica KIT-6 as hard template via vacuum nanocasting method. The structure was characterized by means of XRD, TEM, N2 adsorption-desorption, Raman and FT-IR. The mesoporous NiMoO4 with the coexistence of a-NiMoO4 and fl-NiMoO4 showed well-ordered mesoporous structure, a bimodal pore size distribution and crystalline framework. The catalytic performance of NiMoOa was investigated for oxidative dehydrogenation of propane. It is demonstrated that the mesoporous NiMoO4 catalyst with more surface active oxygen species showed better catalytic performance in oxidative dehydrogena- tion of propane in comparison with bulk NiMoO4.
SBA-15 supported Mo catalysts (Moy/SBA-15) were prepared by an ultrasonic assisted incipient-wetness impregnation method. The physical and chemical properties of the catalysts were characterized by means of N2-adsorption-desorption, XRD, TEM, UV-Vis, Raman, XANES and H2-TPR. The results showed that a trace amount of MoO3 was produced on high Mo content samples. Tum-over frequency (TOF) and product selectivity are dependent on the molybdenum content. Both Mo0.75/SBA-15 and Mo1.75/SBA-15 catalysts give the higher catalytic activity and the selectivity to the total aldehydes for the selective oxidation of C2H6. At the reaction temperature of 625℃, the maximum yield of aldehydes reached 4.2% over Mo0.75/SBA-15 catalyst. The improvement of the activity and selectivity was related with the state of MoOx species.
A series of LaxKl xCoO3 nanorod oxides with perovskite structure were synthesized by sol-gel method using polyvinyl al- cohol (PVA) as additive. These perovskite-type complex oxide catalysts were characterized by the techniques of X-ray diffraction (XRD), infrared (IR), Brumauer-Emmett-Teller (BET) and scanning electron microscopy (SEM). And the results showed that nano- rods of La1-xKxCoO3 perovskite-type complex oxides were fabricated by sol-gel method when the mass concentration of PVA was 4% and the calcined temperature kept at 700 ℃ for 4 h. The catalytic results of CO oxidation showed that the LaxK1-xoO3 catalysts had high activity. LaCoO3 nanorods exposed more {110} plane than LaCoO3 nanoparticles, which was beneficial to the catalytic oxi- dation of CO. LaCoO3 nanorods had the best catalytic performance for the oxidation of CO. At 200 ℃, the CO conversion could reach 100%.
LaFeO3 was used to improve the hydrogen storage properties of Mg H2. The Mg H2+20 wt.%La Fe O3 composite was prepared by ball milling method. The composite could absorb 3.417 wt.% of hydrogen within 21 min at 423 K while Mg H2 only uptaked 0.977 wt.% hydrogen under the same conditions. The composite also released 3.894 wt.% of hydrogen at 623 K, which was almost twice more than Mg H2. The TPD measurement showed that the onset dissociation temperature of the composite was 570 K, 80 K lower than the Mg H2. Based on the Kissinger plot analysis of the composite, the activation energy E des was estimated to be 86.69 k J/mol, which was 36 k J/mol lower than Mg H2. The XRD and SEM results demonstrated that highly dispersed La Fe O3 could be presented in Mg H2, benefiting the reduction of particle size and also acting as an inhibitor to keep the particles from clustering during the ball-milled process.