The MAC protocol design for wireless sensor networks has been researched and developed for decades. SMAC protocol is a famous energy-efficient MAC protocol. Based on SMAC protocol, we find that the boundary nodes in the cluster-shaped synchronization structure bring energy consumption seriously, and provide a virtual cluster aggregation (VCA) algorithm. Because the bounder node follows multiple schedules in one cycle, it may deplete earlier and cause segmentation in wireless sensor networks. The algorithm reduces energy consumption of boundary nodes and extends the lifetime of entire sensor network by merging different virtual clusters, but increases the data transmission delay. Because the sensor nodes have the fixed duty cycle, the larger the coverage area of network is, the greater the data transmission delay increases. We propose the dynamic duty cycle (DDC) algorithm to solve this effect. When the network load and data transmission delay increase, the DDC algorithm exponentially changes the duty cycle of the node to reduce latency. The simulation results show that the performance of SMAC with the VCA and DDC algorithm obtains improvement significantly.
A hybrid carrier (HC) DS CDMA communication system is proposed, combining 4-weighted fractional Fourier transform (4-WFRFT) with code division multiple access (CDMA) technique. The signals are modulated in a certain order fractional Fourier domain and transformed by 4-WFRFT to compose the hybrid carrier signals. In the time domain CDMA technique is adopted for multiple accesses and time diversity gain. Compared to orthogonal frequency division multiplexing (OFDM) system, in which Fourier transform is adopted, the signal energy in HC system is distributed on the time-frequency plane more evenly and symmetrically. Thus, when there is a deep fading notch or single-frequency interference in the channel, the proposed method can split the interference to a broader range in order to reduce the influence, resulting in the better system performance. Moreover, the performances of the proposed system, such as peak-to-average power rate (PAPR) and security are also discussed in the paper.