The effect of the aggregation interval on vehicular traffic flow heteroscedasticity is investigated using real-world traffic flow data collected from the motorway system in the United Kingdom. 30 traffic flow series are generated using 30 aggregation intervals ranging from 1 to 30 min at 1 min increment, and autoregressive integrated moving average (AR/MA) models are constructed and applied in these series, generating 30 residual series. Through applying the portmanteau Q-test and the Lagrange multiplier (LM) test in the residual series from the ARIMA models, the heteroscedasticity in traffic flow series is investigated. Empirical results show that traffic flow is heteroscedastJc across these selected aggregation intervals, and longer aggregation intervals tend to cancel out the noise in the traffic flow data and hence reduce the heteroscedasticity in traffic flow series. The above findings can be utilized in the development of reliable and robust traffic management and control systems.
An optimal resource dispatching method is proposed to solve the multiple-response problem under the conditions of potential incidents on freeway networks.Travel time of the response vehicle is selected instead of route distance as the weight to reflect the impact of traffic conditions on the decisions of rescue resources.According to the characteristics of different types of rescue vehicles the dispatching decision-making time is revised to show the heterogeneity among different rescue vehicle dispatching modes. The genetic algorithm is used to obtain the solutions to the rescue resources dispatching model. A case study shows that the proposed method can accurately reveal the impact of potential incidents on the costs of rescues according to the variations in the types and quantities of rescue resources and the optimal dispatching plan with respect to potential incidents can be obtained.The proposed method is applicable in real world scenarios.