A relatively simple plug-and-play control system of quantum key distribution (QKD) based on PCI7300 card is demonstrated, including mechanism design, key generation and key acquisition. The system works very well at the repetition frequency of 1 MHz, and the key generation rate is 100 k/s. A visibility of better than 95% over 50 km-long fiber at 1.31 gm is obtained, which is stable under ordinary lab conditions for 24 h without any feedback control or adjustment. The presented system is a quite promising candidate to realize the QKD in the future.
We present the transmission spectra of light transmitting a metallic thin film perforated with differently shaped sub- wavelength hole arrays, which are calculated by a plane-wave-based transfer matrix method. We analyze the transmission peak positions and the phase-shift angles of different surface plasmon polariton (SPP) modes by using the microscopic theoretical model proposed by Haitao Liu and Philippe Lalanne [Liu Haitao, and Lalanne Philippe 2008 Nature 452 728], in which the phase shift properties of the SPPs scattered by the subwavelength hole arrays are considered. The results show that the transmission peak position and the minus phase shift angle of the SPP increase as the hole size increases. On the other hand, the effective dielectric constant of the metallic film can be deduced by the microscopic theoretical model.
A new type of all-fibre Sagnac interferometer composed of two loops is proposed and analysed in detail. It can be used with a very long transmission line while maintaining excellent performance characteristics due to the automatic compensation of any birefringence effects in the trunk fibre. Preliminary experiments at 1310 nm wavelength with a 70 km long trunk fibre demonstrated an interference visibility as high as 98%, indicating that this scheme has promising potential applications.