高效用项集挖掘已成为关联规则中的一个热点研究问题.一些基于垂直结构的算法已用来挖掘高效用项集,此类算法的主要优点是将项集的事务和效用信息存储到效用列表中.在求一个项集的超集所在事务可以通过对它的子集进行一次交集运算得到.这种算法在稀疏数据集中非常的有效.但在稠密数据集中存在一个问题,即列表中存储的事务太多,在计算用于剪枝的效用上界时,需要耗费大量的存储空间,同时也影响运行速度.并且在现有的算法中,缺乏针对稠密数据集的高效用项集挖掘算法,往往需要设置很高的最小效用阈值,影响算法的运行效率.针对此问题,提出一个新的算法D-HUI(mining High Utility Itemsets using Diffsets)以及一个新的数据结构—项集列表,首次在高效用项集挖掘中引入差集的概念.利用事务的差集求项集的效用上界,减少计算量以及存储空间,从而提高算法的运行效率.实验结果表明,提出的算法在稠密数据集中,执行速度更快,内存消耗更少.
Redundant array of independent SSDs (RAIS) is generally based on the traditional RAID design and implementation. The random small write problem is a serious challenge of RAIS. Random small writes in parity-based RAIS systems generate significantly more pre-reads and writes which can degrade RAIS performance and shorten SSD lifetime. In order to overcome the well-known write-penalty problem in the parity-based RAID5 storage systems, several logging techniques such as Parity Logging and Data Logging have been put forward. However, these techniques are originally based on mechanical characteristics of the HDDs, which ignore the properties of the flash memory. In this article, we firstly propose RAISL, a flash-aware logging method that improves the small write performance of RAIS storage systems. RAISL writes new data instead of new data and pre-read data to the log SSD by making full use of the invalid pages on the SSD of RAIS. RAISL does not need to perform the pre-read operations so that the original characteristics of workloads are kept. Secondly, we propose AGCRL on the basis of RAISL to further boost performance. AGCRL combines RAISL with access characteristic to guide read and write cost regulation to improve the performance of RAIS storage systems. Our experiments demonstrate that the RAISL significantly improves write performance and AGCRL improves both of write performance and read performance. AGCRL on average outperforms RAIS5 and RAISL by 39.15% and 16.59% respectively.
Linjun MEIDan FENGLingfang ZENGJianxi CHENJingning LIU