双框架磁悬浮控制力矩陀螺(Double-gimbal magnetically suspended control moment gyroscope,DGMSCMG)的框架伺服系统是一个多变量、非线性且强耦合的复杂系统.为了进一步提高框架伺服系统的控制精度,本文提出了一种基于电流模式的动态逆系统解耦方法,通过对功放系统的动态补偿有效克服了未建模动态对解耦性能的影响,采用自适应滑模控制器有效提高了系统的跟踪特性.
It is important to detect interaction effect of multiple genes during certain biological process. In this paper, we proposed, from systems biology perspective, the concept of co-regulated gene module, which consists of genes that are regulated by the same regulator(s). Given a time series gene expression data, a hidden Markov model-based Bayesian model was developed to calculate the likelihood of the observed data, assuming the co-regulated gene modules are known. We further developed a Gibbs sampling strategy that is integrated with reversible jump Markov chain Monte Carlo to obtain the posterior probabilities of the co-regulated gene modules. Simulation study validated the proposed method. When compared with two existing methods, the proposed approach significantly outperformed the conventional methods.