A new method (kinetic vector method, KVM) is presented for analyzing the dynamic stability of wedge in rock slope. The dynamic analysis is carried out based on three dimensional distinct element code (3DEC), and the kinetic inertial force of the wedge under seismic loading can be obtained via calculating the net vectorial nodal force of the finite difference grid. Then, the factor of safety (FOS) of the wedge can be calculated based on limit equilibrium method (LEM) at each dynamic analysis step, therefore time series of the FOS for whole earthquake process can be obtained. For the purpose of evaluating the entire dynamic stability of the wedge, dynamic factor of safety (DFOS) is proposed and defined as a numerical value corresponding with a given rate of probability guarantee based on reliability theory. Consequently, the KVM inherits the merits of the LEM and also has fully nonlinear dynamic analysis capabilities, and the feasibility and correctness of the KVM are tested by an example given by Hoek and Bray (1981). Finally, a rock slope case in Wenchuan Earthquake regions of China is presented to verify the engineering practicability of the KVM, and the results matched the actual situation well.