The effects of the parameters involved in cold spray on the acceleration of particles are systematically investigated by a CFD code in order to reveal the main factors influencing significantly particle velocity. The parameters involved include nozzle geometry parameters, processing parameters and properties of spray particles. It is found that driving gas type, operating pressure and temperature are main processing parameters which influence particle velocity. As for nozzle geometry, the expansion ratio and divergent section length of spray gun nozzle show significant effects. Moreover, the density, size and morphology of powder also have significant effects on particle velocity. The effects of those main parameters are summarized in a comprehensive equation obtained through nonlinear regression of the simulated results for the estimation of particle velocity. The interactions of the parameters on particle acceleration can be examined through the equation. Moreover, the optimization of the dimensions of spray gun nozzle and spray parameters can be realized based on the obtained results.
The microstructural features of cold-sprayed coatings were investigated using Cu, Ti and Zn feedstocks by optical microscopy, scanning electron microscopy and transmission electron microscopy to reveal the microstructure evolution mechanisms in cold spray. Four typical effects including tamping, refinement, impact-induced fusion and annealing were examined on microstrueture. It is found that the microstructure of cold spray coating is remarkably influenced by spray materials. Ti coatings consist of evident porous layer and Cu coatings present a limited porous layer only near the surface. It is clear that the successive tamping effect and dynamic refinement of grains significantly influence the microstructure evolution of cold-sprayed coating. The tamping effect leads to the densification of porous coating layer gradually and the refinement effect leads to the formation of fine microstructure. It is considered that the large difference in the formation of porous layer is attributed to the dynamic impact pressure and hardenability of materials. It is also found that the impact-induced fusion during deposition of Zn coating can also modify the interfacial microstructure between particles in cold spray coating. Moreover, the nanocrystalline phase can be formed at the interfaces among particles resulting from the localized melting of the interfaces and tamping effect. Furthermore, the annealing treatment can modify the microstructure and property of a cold-sprayed coating.