为实现高精度的变厚度轧制,需要对变厚度轧制的厚度控制模型进行研究.基于离散化的控制思想和轧制弹跳方程建立了一种TRB变厚度区轧制辊缝设定模型,用于单机架可逆式四辊冷轧机厚度控制系统.研究了辊缝变化的非线性规律,基于误差分析提出了确定离散区间的方法;给出了一种TRB辊缝控制系统结构以及空载辊缝闭环和负载辊缝闭环的控制方程,并在实验四辊轧机上进行了单厚度过渡区的TRB轧制.结果表明,采用离散化的辊缝设定方法可以实现TRB板的50 mm变厚度区,尺寸最大厚度偏差为0.08 mm,长度偏差<1 mm.
Two kinds of steels (YP960 and YP690) with low carbon bainite structure were designed, and their flow stress and strain hardening exponents were studied. The results showed that, when Hollomon relation was applied to descrihe the flow stress, there were significanl errors between the experimental and calculated points in specimens tempered below 400 ℃, while a high precision was ohserved in samples tempered above 400℃. Whereas, the modijied Voce relation could effectively predici the flow stress as well as the strain hardening exponent at different tempe ring temperatures, which was verified by unbiased estimators such as maximum relative error (MRXE) and average ahsolute relative error (AARE). Besides, the modified Voee relation was also applied to estimate the maximum uniform strain, and the correlation coefficients (R) between the experimental data and calculated maximum uniform strain were more than 0.91. The high correlation coefficients indicated that the modified Vote relation could effec lively predict the uniform deformation ability of high strength steels with low carbon bainite structure at different tempering temperatures.
研究了轧后中温缓慢冷却与中温等温两种不同的热机械控制工艺(thermomechanical control process,TMCP)对硅锰系贝氏体钢的组织与性能的影响.通过拉伸试验机测试试验钢的力学性能,利用扫描电子显微镜、电子背散射衍射等分析手段对试验钢进行显微组织结构分析,并利用X射线衍射测定残余奥氏体含量.结果表明:随着轧后连续缓慢冷却开始温度的升高,贝氏体钢的抗拉强度、硬度及拉伸应变硬化指数n值有所提高,伸长率和冲击韧性降低,屈强比先降低后升高.随着轧后等温时间的延长,贝氏体钢的抗拉强度与屈强比先降低后升高,伸长率及冲击韧性先升高后降低.相对于等温制度,连续缓慢冷却可得到更好的综合力学性能,强塑积明显高于前者,伸长率比前者高20%以上.