The drawing or rolling process endows polycrystal shape memory alloy with a crys- tallographic texture, which can result in macroscopic anisotropy. The main purpose of this work is to develop a constitutive model to predict the thermomechanical behavior of shape memory alloy sheets, which accounts for the crystallographic texture. The total macroscopic strain is decom- posed into elastic strain and macro-transformation strain under isothermal condition. Considering the transformation strain in local grains and the orientation distribution function of crystallo- graphic texture, the macro-transformation strain and the effective elastic modulus of textured polycrystal shape memory alloy are developed by using tensor expressions. The kinetic equation is established to calculate the volume fraction of the martensite transformation under given stress. Furthermore, the Hill's quadratic model is developed for anisotropic transformation hardening of textured SMA sheets. All the calculation results are in good agreement with experimental data, which show that the present model can accurately describe the macro-anisotropic behaviors of textured shape memory alloy sheets.
By using molecular dynamics simulations,we studied the ion irradiation induced damage in mechanically strained Cu nanowires and evaluated the effects of damage on the mechanical properties of nanowires.The stresses in the pre-strained nanowires can be released significantly by the dislocation emission from the cascade core when the strain is greater than 1%.In addition,comparison of the stress-strain relationships between the defect-free nanowire and the irradiated ones indicates that ion irradiation reduces the yield strength of the Cu nanowires,and both the yield stress and strain decrease with the increase of irradiation energy.The results are consistent with the microscopic mechanism of damage production by ion irradiation and provide quantitative information required for accessing the stability of nanomaterials subjected to mechanical loading and irradiation coupling effects.
In the framework of continuum thermodynamics, the present paper presents the thermo-hyperelastic models for both the surface and the bulk of nanostructured materials, in which the residual stresses are taken into account. Due to the existence of residual stresses, different configuration descriptions of the surface (or the bulk) thermo-hyperelastic constitutive equations are not the same even in the cases of infinitesimal deformation. As an example, the effective thermal expansion coefficient of spherical nanoparticles is analyzed.