Black carbon(BC) and PM10 in the center of the Taklimakan Desert were online monitored in the whole year of 2007.In addi-tion,TSP samples were also synchronously daily collected by medium-volume samplers with Whatman41 filters in the spring of 2007.BC in the dust aerosol was up to 1.14%of the total mass of PM10.A remarkable seasonal variation of BC in the aerosol was observed in the order of winter>spring>autumn>summer.The peak value of BC appeared at midnight while the lowest one in the evening each day,which was just the reverse of that in the urban area.The contribution of BC to the total mass of PM10 on non-dust storm days was~11 times of that in dust storm.Through back trajectory and principal component analysis,it was found that BC in the dust aerosol over Taklimakan Desert might be attributed to the emission from the anthropogenic activities,including domestic heating,cooking,combustion of oil and natural gas,and the medium-range transport from those oases located in the margins of the desert.The total BC aerosol from the Taklimakan Desert to be transported to the eastward downstream was estimated to be 6.3×104 ton yr-1.
A total of 238 samples of PM2.5and TSP were analyzed to study the characteristics,sources,and formation pathways of aerosol oxalate in Shanghai in four seasons of 2007.The concentrations of oxalate were0.07–0.41 lg/m3in PM2.5and 0.10–0.48 lg/m3in TSP,respectively.Oxalate displayed a seasonal variation of autumn[summer[winter[spring in both PM2.5and TSP and was dominantly present in PM2.5in all samples.Correlation between oxalate and K?and high ratio of oxalate/K?suggested that biomass burning was a secondary source of aerosol oxalate in Shanghai,in addition to urban VOCs sources(vehicular and industrial emissions),especially in autumn.Secondary formation accounted for the majority of aerosol oxalate in Shanghai,which was supported by the high correlation of oxalate with nssSO42-,K?and NO3-,proceeding from different mechanisms.Relatively high ambient RH together with high cloud cover was found benefiting the secondary formation of aerosol oxalate.The in-cloud process(aqueous-phase oxidation)was proposed to be likely the major formation pathway of aerosol oxalate in Shanghai,which was supported by the high correlation of oxalate with nss-SO42-and K?,dominant residence of oxalate in droplet mode and result of favorable meteorological condition analysis.High correlation of oxalate and NO3-reflected the OH radical involved oxidation chemistry of the two species in the atmosphere and also suggested that gas-particle surface reactions and the evaporation–condensation process were both possible secondary formation pathways of aerosol oxalate in coarser particle mode([1.0 lm).As a major water-soluble organic compound in aerosols,concentration of oxalate showed a distinct negative correlation to the atmospheric visibility,which implied that aerosol organic compounds could play an important role in haze pollution as well as in air quality in Shanghai.