The mass entransy and its dissipation extremum principle have opened up a new direction for the mass transfer optimization. Firstly, the emergence and development process of both the mass entransy and its dissipalion extremum principle are reviewed. Secondly, the combination of the mass entransy dissipation extremum principle and the finite-time thermodynamics for opti- mizing the mass transfer processes of one-way isothermal mass transfer, two-way isothermal equimolar mass transfer, and iso- thermal throttling and isothermal crystallization are summarized. Thirdly, the combination of the mass entransy dissipation ex- tremum principle and the constructal theory for optimizing the mass transfer processes of disc-to-point and volume-to-point problems are summarized. The scientific features of the mass entransy dissipation extremam principle are emphasized.
Based on constructal theory and entransy theory,a generalized constructal optimization of a solidification heat transfer process of slab continuous casting for a specified total water flow rate in the secondary cooling zone was carried out.A complex function was taken as the optimization objective to perform the casting.The complex function was composed of the functions of the entransy dissipation and surface temperature gradient of the slab.The optimal water distribution at the sections of the secondary cooling zone were obtained.The effects of the total water flow rate in the secondary cooling zone,casting speed,superheat and water distribution on the generalized constructal optimizations of the secondary cooling process were analyzed.The results show that on comparing the optimization results obtained based on the optimal water distributions of the 8 sections in the secondary cooling zone with those based on the initial ones,the complex function and the functions of the entransy dissipation and surface temperature gradient after optimization decreased by 43.25%,5.90%and 80.60%,respectively.The quality and energy storage of the slab had obviously improved in this case.The complex function,composed of the functions of the entransy dissipation and surface temperature gradient of the slab,was a compromise between the internal and surface temperature gradients of the slab.Essentially,it is also the compromise between energy storage and quality of the slab.The"generalized constructal optimization"based on the minimum complex function can provide an optimal alternative scheme from the point of view of improving energy storage and quality for the parameter design and dynamic operation of the solidification heat transfer process of slab continuous casting.
A model of three-dimensional helm-shaped body composed of a helm-shaped fin and inner heat sources is built in this paper. For the specified volumes of the body, fin and heat source, the constructal optimizations of the body with single and multiple inner heat sources are implemented. The entransy-dissipation-rate-based equivalent thermal resistance(ETR) is minimized in the optimizations. It shows that for the helm-shaped body with multiple inner heat sources, there exist an optimal ratio of the heat source distance to the radius of the extended fin and a twice optimal radius ratio of the centre fin to the extended fin which lead to the double minimum dimensionless ETR. Comparing the optimal result of the body with helm-shaped fin with that with annular fin, the radius of the centre fin and the distance between the heat source and the center of the body are decreased, and the ETR is decreased by 9.57%. Essentially, the temperature gradient field of the helm-shaped body is more homogenous, and its global heat transfer performance is improved.