Severe slugging can occur in a pipeline-riser system at relatively low liquid and gas flow rates during gas-oil transportation, possibly causing unexpected damage to the production facilities. Experiments with air and water are conducted in a horizontal and downward inclined pipeline followed by a catenary riser in order to investigate the mechanism and characteristics of severe slugging. A theoretical model is introduced to compare with the experiments. The results show that the formation mechanism of severe slugging in a catenary riser is different from that in a vertical riser due to the riser geometry and five flow patterns are obtained and analyzed. A gas-liquid mixture slug stage is observed at the beginning of one cycle of severe slugging, which is seldom noticed in previous studies. Based on both experiments and computations, the time period and variation of pressure amplitude of severe slugging are found closely related to the superficial gas velocity, implying that the gas velocity significantly influences the flow patterns in our experiments. Moreover, good agreements between the experimental data and the numerical results are shown in the stability curve and flow regime map, which can be a possible reference for design in an offshore oil-production system.
由于高阶响应对结构涡激振动存在显著影响,文中在考虑其影响的前提下利用经典Van der Pol尾流振子模型研究了立管在均匀流中的涡激振动特性。在尾流振子与结构模型的相互作用中同时考虑了一阶响应和高阶响应的影响,从而推导了一种考虑了一阶—高阶响应的涡激振动模型。并在此基础上,分析了考虑位移、速度和加速度三种不同右端耦合项作用下的响应特性。此外,还针对不同的质量阻尼比,比较了考虑高阶响应影响和未考虑高阶响应影响情况下系统的涡激振动特性。结果表明,考虑一阶—高阶响应的理论模型能更精确地反映该系统的振动特性。尾流振子和立管的运动幅值都有一定程度的增大。尽管计算结果显示高阶响应比一阶响应小若干个量级,但是不可以忽视高阶响应,因为它对一阶响应存在明显的影响。