In order to study the light flash radiant intensity produced by strong shock on a 2A12 aluminum target at the same projectile incidence angles and different shock velocities,experimental measurements were conducted for light flash phenomena of a 2A12 aluminum projectile impacting a 2A12 aluminum target under the conditions of different impact velocity and the same projectile incidence angles of 45° by using an optical pyrometer measurement system and a two-stage light gas gun loading system.Experimental results show that the peak values of the light flash radiant intensity for the wavelength of 550 nm are largest in the wavelength ranges of 600 nm,650 nm and 700 nm when a 2A12 aluminum projectile impacts a double-layer 2A12 aluminum plate in the present experimental conditions.
To researching the damage characteristics of typical logical chip modules in spacecraft due to plasma generated by hypervelocity impacts,we have established a triple Langmuir probe diagnostic system and a logical chips measurement system,which were used to diagnose plasma characteristic parameters and the logical chip module's logical state changes due to the plasma created by a 7075 aluminum projectile hypervelocity impact on the 2A12 aluminum target.Three sets of experiments were performed with the collision speeds of 2.85 km/s,3.1 km/s and2.20 km/s,at the same incident angles of 30 degrees and logical chip module's positions by using a two-stage light gas gun loading system,a plasma characteristic parameters diagnostic system and a logical chip module's logical state measurement system,respectively.Electron temperature and density were measured at given position and azimuth,and damage estimation was performed for the logical chip module by using the data acquisition system.Experimental results showed that temporary damage could be induced on logical chip modules in spacecraft by plasma generated by hypervelocity impacts under the given experimental conditions and the sensors' position and azimuth.