A series of high quality single crystalline epitaxial Zn 0.95 Co 0.05 O thin films is prepared by molecular beam epitaxy.Superparamagnetism and ferromagnetism are observed when the donor density is manipulated in a range of 10 18 cm 3-10 20 cm 3 by changing the oxygen partial pressure during film growth.The conduction shows variable range hopping at low temperature and thermal activation conduction at high temperature.The ferromagnetism can be maintained up to room temperature.However,the anomalous Hall effect is observed only at low temperature and disappears above 160 K.This phenomenon can be attributed to the local ferromagnetism and the decreased optimal hopping distance at high temperatures.
With the discovery of giant magnetoresistance(GMR),research effort has been made to exploiting the influence of spins on the mobility of electrons in ferromagnetic materials and/or artificial structures,which has lead to the idea of spintronics.A brief introduction is given to GMR effects from scientific background to experimental observations and theoretical models.In addition,the mechanisms of various magnetoresistance beyond the GMR are reviewed,for instance,tunnelling magnetoresistance,colossal magnetoresistance,and magnetoresistance in ferromagnetic semiconductors,nanowires,organic spintronics and non-magnetic systems.