Many proposed P2P networks are based on traditional interconnection topologies. Given a static topology, the maintenance mechanism for node join/departure is critical to designing an efficient P2P network. Kautz graphs have many good properties such as constant degree, low congestion and optimal diameter. Due to the complexity in topology maintenance, however, to date there have been no effective P2P networks that are proposed based on Kautz graphs with base ~ 2. To address this problem, this paper presents the "distributed Kautz (D-Kautz) graphs", which adapt Kautz graphs to the characteristics of P2P networks. Using the D-Kautz graphs we further propose SKY, the first effective P2P network based on Kautz graphs with arbitrary base. The effectiveness of SKY is demonstrated through analysis and simulations.