A novel Sn-2.5Ag-2.0Ni alloy was used for soldering SiCp/Al composites substrate deposited with electroless Ni(5%P) (mass fraction)and Ni(10%P)(mass fraction)layers.It is observed that variation of P contents in the electroless Ni(P)layer results in different types of microstructures of SnAgNi/Ni(P)solder joint.The morphology of Ni3Sn4 intermetallic compounds(IMCs)formed between the solder and Ni(10%P)layer is observed to be needle-like and this shape provides high speed diffusion channels for Ni to diffuse into solder that culminates in high growth rate of Ni3Sn4.The diffusion of Ni into solder furthermore results in the formation of Kirkendall voids at the interface of Ni(P)layer and SiCp/Al composites substrate.It is observed that solder reliability is degraded by the formation of Ni2SnP,P rich Ni layer and Kirkendall voids.The compact Ni3Sn4 IMC layer in Ni(5%P)solder joint prevents Ni element from diffusing into solder,resulting in a low growth rate of Ni3Sn4 layer.Meanwhile,the formation of Ni2SnP that significantly affects the reliability of solder joints is suppressed by the low P content Ni(5%P)layer.Thus,shear strength of Ni(5%P) solder joint is concluded to be higher than that of Ni(10%P)solder joint.Growth of Ni3Sn4 IMC layer and formation of crack are accounted to be the major sources of the failure of Ni(5%P)solder joint.
A novel type of ZnO-Al2O3-B2O3-SiO2 glass-ceramics sealing to Kovar in electronic packaging was developed, whose thermal expansion coefficient and electrical resistance are 5.2× 10^-6/℃ and over 1×10^13 Ω·cm, respectively. The major crystalline phases in the glass-ceramic seals were ZnAl2O4, ZnB2O4, and NaSiAl2O4. The dielectric resistance of the glass-ceramic could be remarkably enhanced through the control of alkali metal ions into crystal lattices. It was found that crystallization happened first on the surface of the sample, leaving the amorphous phase in the inner, which made the glass suitable for sealing. The glass-ceramic showed better wetting on the Kovar surface, and sealing atmosphere and temperature had great effect on the wetting angle. Strong interracial bonding was obtained, which was mainly attributed to the interracial reaction between SiO2 and FeO or Fe3O4.
The continuing miniaturization of electronic devices in microelectronics and semiconductors drives the development of new packaging materials with enhanced thermal conductivity to dissipate the heat generated in electronic packages. In recent years, several promising composite materials with high thermal conductivity have been developed successfully for high performance electronic equipment to replace the traditional Kovar and Cu/W or Cu/Mo alloys, such as SiCp/Al, SICp/Cu, diamond/Al and diamond/Cu. However, these materials with high content of reinforcements have not been widely used in packaging field because they are hard to be machined into complex-shaped parts due to their greater hardness and brittleness. So, it is necessary to explore a near-net shape forming technology for these composites. In this paper, a novel technology of powder injection molding-infiltration is introduced to realize the near-net shaped preparation of the composite packages with high thermal conductivity.
Ni-P coated diamond powder was fabricated successfully by using electroless plating.Effects of active solutions,plating time,reaction temperature,and the components of the plating bath on the Ni-P coating were investigated systematically.Moreover,a study on the thermal stability of Ni-P coated diamond under various atmospheres was performed.The results indicate that Pd atoms absorbed on the diamond surface as active sites can consequently enhance the deposition rate of Ni effectively.The optimized plating bath and reaction conditions improve both the plating speed and the coverage rate of Ni-P electroless plating on the diamond surface.Compared to the diamond substrate,the diamond coated with Ni-P films exhibits very high thermal stability and can be processed up to 900°C in air and 1300°C in protective atmosphere such as H2.