用DGGE(denatured gradient gel electrophoresis)和构建18SrDNA克隆文库2种方法对太湖不同湖区的真核微型浮游生物(0.8-20μm)多样性及组成结构进行了研究.DGGE结果表明,不同湖区真核微型浮游生物的DGGE指纹图谱存在明显差异,其中营养水平较低的东太湖和贡湖DGGE条带数最多,分别为23和24,香农多样性指数分别为3.135和3.178,而营养水平较高的梅梁湾和五里湖最少,均为18,香农多样性指数为2.890,表明营养水平较低湖区的多样性高于营养水平较高的湖区.克隆测序结果表明太湖中真核微型浮游生物种类丰富,占优势的主要是一些鞭毛藻、异养鞭毛虫、纤毛虫和真菌,而营养水平不同的梅梁湾、湖心、东太湖中真核微型浮游生物组成明显不同.在营养水平较高的梅梁湾,28.6%的OUT(operational taxonomicunit)属于异养鞭毛虫,另外隐藻、金藻分别占22.9%和14.3%;在湖心,金藻的比例最大,占25.7%,另外比较多的是异养鞭毛虫和隐藻,分别为20.0%和14.3%;而营养水平较低的东太湖各类纤毛虫所占比份最大,为26.8%,异养鞭毛虫较少,仅占4.9%,另外真菌含量较高,占12.2%.
In order to monitor the changes of Microcystis along with temporal and spatial variations, seasonal variation of Microcystis in Lake Taihu was investigated by 16S-23S rRNA internal transcribed spacer denaturing gradient gel electrophoresis (16S-23S rRNA-ITS DGGE) and microscopic evaluation. Samples were collected quarterly at four sites (River Mouth, Meiliang Bay, Cross Area, and Lake Center) from August 2006 to April 2007. Results showed that Microcystis dominated total phytoplankton abundance at the four sites in all seasons except winter. The average annual abundance of Microcystis was relatively high at River Mouth and Meiliang Bay, reaching 81.22×10^6 and 61.32×10^6 cells/L, respectively. For temporal variations, Shannon-Wiener diversity index (H') according to DGGE profile revealed the richness of Microcystis in summer (H' = 1.375±0.034) and winter (H' = 1.650 ±0.032) was lower than that in spring (H' = 2.078 ±0.031) and autumn (H' = 2.365 ±0.032) (P 〈 0.05). While for spatial variations, the richness of Microcystis at River Mouth (H' = 2.015± 0.074) was higher than at other sites during four seasons (P 〈 0.01). Very few differences of Microcystis diversity in the same season were observed among the other three sites (P 〉 0.05). Canonical correspondence analysis (CCA) was performed to elucidate the relationships between Microcystis operational taxonomic units (OTUs) composition and the environmental factors. Results of CCA revealed that temperature was strongly positively correlated with the first axis (r = 0.963), while TSS was negative correlated with the second axis (r = -0.716). Phylogenetic tree based on the sequencing results of target bands on DGGE gel indicated that samples collected in summer and winter constituted two separated clusters.
TAN XiaoKONG FanxiangZENG QingfeiCAO HuanshengQIAN ShanqinZHANG Min