In this paper,Noether symmetry and Mei symmetry of discrete nonholonomic dynamical systems with regular and the irregular lattices are investigated.Firstly,the equations of motion of discrete nonholonomic systems are introduced for regular and irregular lattices.Secondly,for cases of the two lattices,based on the invariance of the Hamiltomian functional under the infinitesimal transformation of time and generalized coordinates,we present the quasi-extremal equation,the discrete analogues of Noether identity,Noether theorems,and the Noether conservation laws of the systems.Thirdly,in cases of the two lattices,we study the Mei symmetry in which we give the discrete analogues of the criterion,the theorem,and the conservative laws of Mei symmetry for the systems.Finally,an example is discussed for the application of the results.
In this paper we give a new method to investigate Noether symmetries and conservation laws of nonconservative and nonholonomic mechanical systems on time scales , which unifies the Noether's theories of the two cases for the continuous and the discrete nonconservative and nonholonomic systems. Firstly, the exchanging relationships between the isochronous variation and the delta derivatives as well as the relationships between the isochronous variation and the total variation on time scales are obtained. Secondly, using the exchanging relationships, the Hamilton's principle is presented for nonconservative systems with delta derivatives and then the Lagrange equations of the systems are obtained. Thirdly, based on the quasi-invariance of Hamiltonian action of the systems under the infinitesimal transformations with respect to the time and generalized coordinates, the Noether's theorem and the conservation laws for nonconservative systems on time scales are given. Fourthly, the d'Alembert-Lagrange principle with delta derivatives is presented, and the Lagrange equations of nonholonomic systems with delta derivatives are obtained. In addition, the Noether's theorems and the conservation laws for nonholonomic systems on time scales are also obtained. Lastly, we present a new version of Noether's theorems for discrete systems. Several examples are given to illustrate the application of our results.
This paper introduces the canonical coordinates method to obtain the first integral of a single-degree freedom constraint mechanical system that contains conserva-tive and non-conservative constraint homonomic systems. The definition and properties of canonical coordinates are introduced. The relation between Lie point symmetries and the canonical coordinates of the constraint mechanical system are expressed. By this re-lation, the canonical coordinates can be obtained. Properties of the canonical coordinates and the Lie symmetry theory are used to seek the first integrals of constraint mechanical system. Three examples are used to show applications of the results.
We present a numerical simulation method of Noether and Lie symmetries for discrete Hamiltonian systems. The Noether and Lie symmetries for the systems are proposed by investigating the invariance properties of discrete Lagrangian in phase space. The numerical calculations of a two-degree-of-freedom nonlinear harmonic oscillator show that the difference discrete variational method preserves the exactness and the invariant quantity.
In this paper, we extend Noether's theorem to nonholonomic constraints systems in optimal control. We present a systematic way to calculate conserved quantities along the Pontryagin extremals for optimal control problems with nonholonomic constraints, which are invariant under the parameter groups of infinitesimal transformations that change all (time, state, control) variables. Meanwhile, the Noether equalities corresponding to the conservation laws are given. Then, we obtain a new version of Noether's theorem to optimal control systems. An example is given to illustrate the application of these results.