许昌市科技发展计划项目(5007)
- 作品数:3 被引量:6H指数:2
- 相关作者:何琴王淑敏易成黄保军更多>>
- 相关机构:许昌学院更多>>
- 发文基金:许昌市科技发展计划项目河南省教育厅自然科学基金国际科技合作与交流专项项目更多>>
- 相关领域:理学农业科学自动化与计算机技术更多>>
- BP网络用于枣香味成分的定量结构色谱保留关系研究被引量:1
- 2013年
- 采用误差反传前向人工神经网络(BP-ANN)建立了63种大枣香味成分的结构与色谱保留之间的定量关系模型(QSRR)。以63种大枣香味成分的分子电性距离矢量为输入参数,色谱保留时间为输出参数,采用内外双重验证法分析该模型的稳定性和外部预测能力。所构建网络模型的相关系数为0.998 9,交叉检验相关系数为0.998 9,标准偏差为0.959,残差绝对值低于3.844,应用于外部预测集,外部预测集相关系数为0.998 9;而多元线性回归(MLR)法模型的相关系数为0.981 9,交叉检验相关系数为0.982 0,标准偏差为3.697、残差绝对值低于9.264,外部预测集相关系数为0.986 1。结果表明,ANN模型的拟合效果明显优于MLR模型。
- 黄保军
- 关键词:香气成分
- BP网络用于香梨酒香气成分的QSRR研究被引量:2
- 2013年
- 采用误差反传前向人工神经网络建立54种香梨酒香气成分的结构与色谱保留之间的定量关系模型(ANN模型).以54种香梨酒香气成分的分子连接性指数和分子形状属性指数作为输入,色谱保留时间作为输出,采用内外双重验证的方法分析和检验所得模型的稳定性和外部预测能力,所构建网络模型的相关系数为0.998、交叉检验相关系数为0.997、标准偏差为0.289、残差绝对值≤1.12,应用于外部预测集,外部预测集相关系数为0.984;而多元线性回归(MLR)法模型的相关系数为0.951、标准偏差为1.33、残差绝对值≤3.08,外部预测集相关系数为0.953.结果表明:ANN模型获得了比MLR模型更好的拟合效果.
- 何琴
- 关键词:人工神经网络香气成分
- 基于神经网络的硝基芳烃急性毒性QSAR研究被引量:3
- 2013年
- 采用BP神经网络模型研究了45种硝基芳烃类化合物的结构与其急性毒性之间的关系,以硝基芳烃类化合物的量子化学参数作为输入,用3×4×1网络预测其急性毒性。采用内外双重验证的办法分析和检验所得模型的稳定性,所构建网络模型的相关系数为0.999 5,交叉检验相关系数为0.996 8,标准差为0.023 5,残差绝对值≤0.15,应用于外部预测集,外部预测集相关系数为0.998 4;而多元线性回归法(MLR)模型的相关系数为0.943 5,交叉检验相关系数为0.928 7,标准差为0.240 9,残差绝对值≤0.69,外部预测集相关系数为0.956 6。结果表明,BP神经网络模型获得了比MLR模型更好的拟合效果。
- 何琴王淑敏易成
- 关键词:BP神经网络