The intrinsic photocurrent generation mechanism of a self-assembled graphene p-n junction operating at 1.55 ~tm is investigated experimentally. It is concluded that both a photovoltage effect and a photothermoelectric effect contribute to the final photocurrent. The photocurrent signal at the p-n junction was found to be dominated by photothermoelectric current, arising from different self-assembled doping levels.
High-speed avalanche photodiodes are widely used in optical communication systems. Nowadays, separate absorption charge and multiplication structure is widely adopted. In this article, a structure with higher speed than separate absorption charge and multiplication structure is reported. Besides the traditional absorption layer, charge layer and multiplication layer, this structure introduces an additional charge layer and transit layer and thus can be referred to as separate absorption, charge, multiplication, charge and transit structure. The introduction of the new charge layer and transit layer brings additional freedom in device structure design. The benefit of this structure is that the carrier transit time and device capacitance can be reduced independently, thus the 3 dB bandwidth could be improved by more than 50% in contrast to the separate absorption charge and multiplication structure with the same size.
In this paper, we present the design, fabrication, and measurement of an evanescently coupled waveguide photode- tector operating at 1.55 gm, which mainly comprises a diluted waveguide, a single-mode rib waveguide and a p-i-n photodiode with an extended optical matching layer. The optical characteristics of this structure are studied by using a three-dimensional finite-difference time-domain (3D FDTD) method. The photodetector exhibits a high 3-dB bandwidth of more than 35 GHz and a responsivity of 0.291 A/W at 1550 nm directly coupled with a cleaved fiber. Moreover, a linear response of more than 72-mW optical power is achieved, where a photocurrent of more than 21 mA is obtained at a reverse bias voltage of 3 V.
Wet thermal annealing effects on the properties of TaN/HfO2/Ge metal-oxide-semiconductor (MOS) structures with and without a GeO2 passivation layer are investigated. The physical and the electrical properties are characterized by X-ray photoemission spectroscopy, high-resolution transmission electron microscopy, capacitance-voltage (C-V) and current-voltage characteristics. It is demonstrated that wet thermal annealing at relatively higher temperature such as 550 ℃ can lead to Ge incorporation in HfO2 and the partial crystallization of HfO2, which should be responsible for the serious degradation of the electrical characteristics of the TaN/HfO2/Ge MOS capacitors. However, wet thermal annealing at 400 ℃ can decrease the GeOx interlayer thickness at the HfO2/Ge interface, resulting in a significant reduction of the interface states and a smaller effective oxide thickness, along with the introduction of a positive charge in the dielectrics due to the hydrolyzable property of GeOx in the wet ambient. The pre-growth of a thin GeO2 passivation layer can effectively suppress the interface states and improve the C V characteristics for the as-prepared HfO2 gated Ge MOS capacitors, but it also dissembles the benefits of wet thermal annealing to a certain extent.