K416B Ni-based superalloy with high W content has good high temperature properties and low cost,which has a great development potential.To investigate the room temperature tensile property and the deformation feature of K416B superalloy,tensile testing at room temperature was carried out,and optical microscopy (OM),scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to analyze the deformation and damage mechanisms.Results show that the main room temperature tensile deformation features of the K416B nickel-based superalloy are dislocations slipping in the matrix and shearing into γ’ phase.The <110> super-dislocations shearing into γ’ phase can form the anti-phase boundary two coupled (a/2)<110> partial-dislocations or decompose into the configuration of two (a/3)<112> partial dislocations plus stacking fault.In the later stage of tensile testing,the slip-lines with different orientations are activated in the grain,causing the stress concentration in the regions of block carbide or the porosity,and cracks initiate and propagate along these regions.
The properties of Ni-base superalloy castings microstructure, and different solidification methods have are closely related to the uniformity of their as-cast serious effect on microstructural uniformity. In this paper, the influences of high rate solidification (HRS) process (with or without superheating) and liquid metal cooling (LMC) process on the microstructure of DZ125 superalloy were investigated. Blade-shape castings were solidified at rates of 40 pm.s-1 to 110 tJm.s1 using HRS process and a comparative experiment was carried out at a rate of 70 IJm.s1 by LMC process. The optical microscope (OM), scanning electron microscope (SEM) were used to observe the microstructure and the grain size was analyzed using electron back scattered diffraction (EBSD) technique. Results show that for the castings by either HRS or LMC process, the primary dendrite arm spacing and size of 7' precipitates decrease with increasing the withdrawal rate; the dendrites and 7' precipitates at the upper section of the blade are coarser than those in the middle, especially for the HRS castings without high superheating technique. When the withdrawal rate is 70 iJm.s1, the castings by HRS with high superheating technique have the smallest PDAS with fine 7' precipitates; while the size distribution of 7' precipitates is more homogenous in LMC castings, and the number of larger grains in LMC castings is smaller than that in the HRS castings. Moreover, high superheating technique yields smaller grains in the castings. Both the LMC method and HRS with high superheating technique can be used to prepare castings with reduced maximum grain size.
Ge BingmingLiu LinZhang JunLi YafengFu HengzhiLiu Xiaofu
The effect of long-term thermal exposure on the tensile behavior of a high W content nickel-based superalloy K416B was investigated.The microstructure and the deformation characteristics were observed by scanning electron microscopy and transmission electron microscopy,and the phase transformation of the alloy during long-term thermal exposure was analyzed by X-ray diffraction patterns and differential thermal analysis.Results showed that after thermal exposure at 1000℃,the MC carbides in the K416 B alloy decomposed into M_(6)C.During tensile deformation,dislocations slipping inγmatrix crossed over the M_(6)C by Orowan bowing mechanism.With the increase of thermal exposure time,the secondary M_(6)C reduced greatly the yield strength of the alloy at room temperature.Meanwhile,the continuous distribution of the secondary M_(6)C with great brittleness in the grain boundary could become the main source of crack,which might change the fracture characteristic of the alloy from trans-granular to intergranular.
With the development of nucleation theory,the calculation of phase diagrams(CALPHAD)method and microscopic elasto-plasticity mechanics,it is possible to apply the phase-field method to simulate the γrafting behavior of nickel-base single-crystal superalloys under the conditions of heat treatment,fatigue and creep testing.Based on the experimental progress in γrafting behavior and in combination with the microstructural simulation of the precipitation and rafting of c0phase,this paper reviews the phase-field investigation of γrafting in nickel–base single-crystal superalloys.
Yan ZhaoHongyu ZhangHua WeiQi ZhengTao JinXiaofeng Sun
The effect of solidification rate on grain structure evolution during directional solidification (I J:5) ot a Ni-oasea superalloy was explored. It was found that a high solidification rate led to sharper 〈001〉 texture and smaller grain size in the DS samples. One of the most important findings in this work was that such result was not in accordance with the general concept, and the sharper 〈001〉 texture was accompanied by the larger grain size. To explain the contradiction, the modeling samples with five grains were produced and the effect of solidification rate on the evolution of grain texture was illustrated based on the modeling samples.
The precipitation behavior of carbide in K416 B superalloy was investigated by means of creep measurement and microstructure observation. The results show that nanometer M6 C particles discontinuously precipitate in the γ matrix or along the γ/γ′ interface of the alloy during high temperature tensile creep. Thereinto, the amount of fine M6 C carbide increases as creep goes on, and the coherent interfaces of M6 C phase precipitating from the γ matrix are {100} and {111} planes. The thermodynamics analysis indicates that the solubility of element carbon in the matrix decreases when the alloy is deformed by the axial tensile stress during creep, so as to cause the carbon segregating in the regions of stress concentration and combining with carbide-forming elements M(W, Co), which promotes the fine M6 C carbide to precipitate from the γ matrix.