To accurately evaluate the degradation process of prestressed concrete continuous bridges exposed to aggressive environments in life-cycle,a finite element-based approach with respect to the lifetime performance assessment of concrete bridges was proposed.The existing assessment methods were firstly introduced and compared.Some essential mechanics problems involved in the degradation process,such as the deterioration of materials properties,the reduction of sectional areas and the variation of overall structural performance caused by the first two problems,were investigated and solved.A computer program named CBDAS(Concrete Bridge Durability Analysis System) was written to perform the above-metioned approach.Finally,the degradation process of a prestressed concrete continuous bridge under chloride penetration was discussed.The results show that the concrete normal stress for serviceability limit state exceeds the threshold value after 60 a,but the various performance indicators at ultimate limit state are consistently in the allowable level during service life.Therefore,in the case of prestressed concrete bridges,the serviceability limit state is more possible to have durability problems in life-cycle;however,the performance indicators at ultimate limit state can satisfy the requirements.