To express recombinant arresten in Escherichia coli (E.Coli) and investigate its biological activity, prokaryotic expression vector of human arresten gene was constructed by gene engineering. Human arresten gene was amplified from recombinant plasmid pGEMArr by polymerase chain reaction (PCR), and inserted into prokaryotic expression vector pRSET containing T7 promoter. Restriction analysis and DNA sequencing verified that the arresten gene was correctly cloned into the expression vector. The recombinant plasmid pRSETAt was subsequently transformed into E.coli BL21 (DE3), and the target gene was expressed under induction of IPTG. SDS-PAGE analysis revealed that the recombinant protein with a molecular weight of 29 kD (1 kD=0.992 1 ku) amounted to 29 % of the total bacterial proteins. After purification and renaturation, the recombinant protein could significantly suppress the proliferation of human umbilical vein endothelial cells (HUVECs). These results suggested that the expression of a biologically active form of human arresten in the pRSET expression system laid a foundation for further study on the mechanistic insight into arresten action on angiogenesis and the development of powerful anti-cancer drugs.
In order to investigate the origin of neointimal smooth muscle cells in transplant arterio- sclerosis in rat aortic allograft, sex-mismatched bone marrow transplantation was performed from male Wistar rats to female Wistar rats. Four weeks after transplantation, the aortic transplant model was established by means of micro-surgery in rats. The recipients were divided into 4 groups: female Wistar-female Wistar aortic isografts, female SD-female Wistar aortic allografts, male SD-male Wis- tar aortic allografts, female SD-chimera Wistar aortic allografts. Eight weeks after transplantation, aortic grafts were removed at autopsy and processed for histological evaluation and immunohisto- chemistry. The results indicated that excessive accumulation of α-SMA-positive smooth muscle cells resulted in significant neointima formation and vascular lumen stricture in rat aortic allografts. Neointima assay revealed that the neointimal area and NIA/MA ratio of transplanted artery were sig- nificantly increased in all of aortic allograft groups as compared with those in aortic isograft group (P<0.01). Neointimal smooth muscle cells were harvested from cryostat sections of aortic allograft by microdissection method. The Sry gene-specific PCR was performed, and the result showed that a dis- tinct DNA band of 225 bp emerged in the male-male aortic allograft group and chimera aortic al- lograft group respectively, but not in the female-female aortic allograft group. It was suggested that recipient bone-marrow cells, as the origin of neointimal smooth muscle cells, contributed to the pathological neointimal hyperplasia of aortic allograft and transplant arteriosclerosis.