Carbon isotope compositions for both the carbonate shells and soft bodies (organic tissue) of living land snails collected mostly from the Loess Plateau, China have been measured. The result shows that δ 13C values range from -13.1‰ to -4.3‰ for the aragonite shell samples and from -26.8‰ to -18.0‰ for the soft body samples. Although the shells are enriched in 13C relative to the bodies averagely by 14.2(±0.8)‰, the shell δ 13Ca values are closely correlated to the body δ 13Corg values, expressed as δ 13Ca = 1.021 δ 13Corg + 14.38 (R = 0.965; N = 31). This relationship indicates that δ 13Ca is primarily a function of the isotopic composition of the snail diets since previous studies have proved that the snail body is the same as their food in carbon isotope composition. In other words, carbon isotope compo-sition of the carbonate shell can be used as a proxy to estimate the dietary 13C abundance of the land snails. The data also support that the 13C enrichment of the carbonate shells results mainly from the equilibrium fractionations between the metabolic CO2, HCO3-in the hemolymph and shell aragonite, and partially from kinetic fractionations when snail shells form during their activity.
Reconstructing the evolutionary history of the Gobi deserts developed from alluvial sediments in arid regions has great significance in unraveling changes in both tectonic activity and climate.However,such work is limited by a lack of suitable dating material preserved in the Gobi Desert,but cosmogenic 10Be has great potential to date the Gobi deserts.In the present study,10Be in quartz gravel from the Gobi deserts of the Ejina Basin in Inner Mongolia of China has been measured to assess exposure ages.Results show that the Gobi Desert in the northern margin of the basin developed 420 ka ago,whereas the Gobi Desert that developed from alluvial plains in the Heihe River drainage basin came about during the last 190 ka.The latter developed gradually northward and eastward to modern terminal lakes of the river.These temporal and spatial variations in the Gobi deserts are a consequence of alluvial processes influenced by Tibetan Plateau uplift and tectonic activities within the Ejina Basin.Possible episodes of Gobi Desert development within the last 420 ka indicate that the advance/retreat of alpine glaciers during glacial/interglacial cycles might have been the dominant factor to influencing the alluvial intensity and water volume in the basin.Intense floods and large water volumes would mainly occur during the short deglacial periods.
LU YanWuGU ZhaoYanALDAHAN AlaZHANG HuCaiPOSSNERT GoranLEI GuoLiang