This paper presents an SG-DBR with a monolithically integrated SOA fabricated using quantum-well intermixing (QWI) for the first time in China's Mainland. The wavelength tuning range covers 33nm and the output power reaches 10mW with an SOA current of 50mA. The device can work at available channels with SMSR over 35dB.
The effects of the multimode diluted waveguide on quantum efficiency and saturation behavior of the evanescently coupled uni-traveling carrier (UTC) photodiode structures are reported. Two kinds of evanescently coupled uni-traveling carrier photodiodes (EC-UTC-PD) were designed and characterized: one is a conventional EC-UTC-PD structure with a multimode diluted waveguide integrated with a UTC-PD; and the other is a compact EC-UTC-PD structure which fused the multimode diluted waveguide and the UTC-PD structure together. The effect of the absorption behavior of the photodiodes on the efficiency and saturation characteristics of the EC-UTC-PDs is analyzed using 3-D beam propagation method, and the results indicate that both the responsivity and saturation power of the compact EC-UTC-PD structures can be further improved by incorporating an optimized compact multimode diluted waveguide.
A frequency and wavelength tunable self-pulsation laser based on DBR laser devices is reported for the first time.This laser generates continuous tunable optical microwave in the range of 1.87-21.81 GHz with 3-dB linewidth about 10 MHz by tuning the injection currents on the front and back gain sections,and exhibits wavelength tuning range from 1536.28 to 1538.73 nm by tuning the injection currents on the grating section.
High output powers and wide range tuning have been achieved in a sampled grating distributed Bragg reflector laser with an integrated semiconductor optical amplifier.Tilted amplifier and anti-reflection facet coating are used to suppress reflection.We have demonstrated sampled grating DBR laser with a tuning range over 38 nm,good wavelength coverage and peak output powers of more than 9 mW for all wavelengths.
Photoluminescence (PL) and lasing properties of InAs/GaAs quantum dots (QDs) with different growth procedures prepared by metalorganic chemical vapour deposition are studied. PL measurements show that the low growth rate QD sample has a larger PL intensity and a narrower PL line width than the high growth rate sample. During rapid thermal annealing, however, the low growth rate sample shows a greater blueshift of PL peak wavelength. This is caused by the larger InAs layer thickness which results from the larger 2-3 dimensional transition critical layer thickness for the QDs in the low-growth-rate sample. A growth technique including growth interruption and in-situ annealing, named indium flush method, is used during the growth of GaAs cap layer, which can flatten the GaAs surface effectively. Though the method results in a blueshift of PL peak wavelength and a broadening of PL line width, it is essential for the fabrication of room temperature working QD lasers.
Electroabsorption modulators combining Franz-Keldysh effect and quantum confined Stark effect have been mono-lithically integrated with tunnel-injection quantum-well distributed feedback lasers using a quantum well intermixing method. Superior characteristics such as extinction ratio and temperature insensitivity have been demonstrated at wide temperature ranges.