Plant invasions could significantly alter arbuscular mycorrhizal(AM) fungal communities, but the effect may vary with plant species and local environments. Identifying changes in the AM fungal community due to plant invasion could improve our understanding of the invasion processes. Here, we examined the AM fungal community composition both in roots and rhizosphere soils of the invasive plant Cenchrus incertus and the dominant native plant Setaria viridis in a typical steppe in Inner Mongolia by using terminal restriction fragment length polymorphism analyses(T-RFLP). The results showed that AM fungal abundance in the rhizosphere soils of C. incertus was significantly lower than that of S. viridis. The AM fungal community composition in the rhizosphere soils of the two plant species also largely differed. In general, AM fungal community structures in roots corresponded very well to that in rhizosphere soils for both plant species. The dominant AM fungal type both in invasive and native plants was T-RFLP 524 bp, which represents Glomus sp.(Virtual taxa 109 and 287). Three specific T-RF types(280,190 and 141bp) were significantly more abundant in C. incertus, representing three clusters in Glomus which also named as VT(virtual taxa) 287, 64 and 214, Rhizophagus intraradices(VT 113) and Diversispora sp.(VT 60). While the specific T-RF types,189 and 279 bp, for S. viridis, only existed in Glomus cluster 1(VT 156), were significantly less abundant in C. incertus. These results indicated that AM fungi might play an important role in the invasion process of C. incertus, which still remains to be further investigated.