With the merits of a simple process and a short fabrication period, the capacitor structure provides a convenient way to evaluate memory characteristics of charge trap memory devices. However, the slow minority carrier generation in a capacitor often makes an underestimation of the program/erase speed. In this paper, illumination around a memory capacitor is proposed to enhance the generation of minority carriers so that an accurate measurement of the program/erase speed can be achieved. From the dependence of the inversion capacitance on frequency, a time constant is extracted to quantitatively characterize the formation of the inversion layer. Experimental results show that under a high enough illumination, this time constant is greatly reduced and the measured minority carrier-related program/erase speed is in agreement with the reported value in a transistor structure.
In this paper the endurance characteristics and trap generation are investigated to study the effects of different postdeposition anneals (PDAs) on the integrity of an Al2O3/Si3N4/SiOz/Si memory gate stack. The flat-band voltage (Vfb) turnarounds are observed in both the programmed and erased states of the N2-PDA device. In contrast, this turnaround is observed only in the erased state of the O2-PDA device. The Vfb in the programmed state of the O2-PDA device keeps increasing with increasing program/erase (P/E) cycles. Through the analyses of endurance characteristics and the low voltage round-trip current transients, it is concluded that in both kinds of device there are an unknown type of pre-existing characteristic deep traps and P/E stress-induced positive oxide charges. In the O2-PDA device two extra types of trap are also found: the pre-existing border traps and the P/E stress-induced negative traps. Based on these four types of defects we can explain the endurance characteristics of two kinds of device. The switching property of pre-existing characteristic deep traps is also discussed.