The cascade algorithm plays an important role in computer graphics and wavelet analysis.In this paper,we first investigate the convergence of cascade algorithms associated with a polynomially decaying mask and a general dilation matrix in L p (R s) (1 p ∞) spaces,and then we give an error estimate of the cascade algorithms associated with truncated masks.It is proved that under some appropriate conditions if the cascade algorithm associated with a polynomially decaying mask converges in the L p-norm,then the cascade algorithms associated with the truncated masks also converge in the L p-norm.Moreover,the error between the two resulting limit functions is estimated in terms of the masks.
We consider efficient methods for the recovery of block sparse signals from underdetermined system of linear equations. We show that if the measurement matrix satisfies the block RIP with δ2s 〈 0.4931, then every block s-sparse signal can be recovered through the proposed mixed l2/ll-minimization approach in the noiseless case and is stably recovered in the presence of noise and mismodeling error. This improves the result of Eldar and Mishali (in IEEE Trans. Inform. Theory 55: 5302-5316, 2009). We also give another sufficient condition on block RIP for such recovery method: 58 〈 0.307.