We investigate the entanglement of a three-level atom in A configuration interacting with two quantized field modes by using logarithmic negativity. Then, we study the relationship of the atomic coherence and the entanglement between two fields which are initially prepared in vacuum or thermal states. We find that if the two fields are prepared in thermal states, the atomic coherence can induce the entanglement between two thermal fields. However, there is no coherence-induced entanglement between two vacuum fields.
We propose a scheme for transferring entanglement through two independent arrays of coupled resonator waveguides, where a three-level atom is embedded in each resonator. We investigate the entanglement dynamics of the transferred state. The influence of initial states and applied lasers on the entanglement sudden death phenomenon is also discussed. Furthermore, we study the dynamics of pairwise quantum correlations measured by the quantum discord.